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ABSTRACT

The rising energy and hardware demand is a growing con-
cern in enterprise data centers. It is therefore desirable to
limit the hardware resources that need to be added for new
enterprise applications (EA). Detailed capacity planning is
required to achieve this goal. Otherwise, performance re-
quirements (i.e. response time, throughput, resource uti-
lization) might not be met. This paper introduces resource
profiles to support capacity planning. These profiles can
be created by EA vendors and allow evaluating energy con-
sumption and performance of EAs for different workloads
and hardware environments. Resource profiles are based on
architecture-level performance models. These models allow
to represent performance-relevant aspects of an EA architec-
ture separately from the hardware environment and work-
load. The target hardware environment and the expected
workload can only be specified by EA hosts and users re-
spectively. To account for these distinct responsibilities, an
approach is introduced to adapt resource profiles created
by EA vendors to different hardware environments. A case
study validates this concept by creating a resource profile
for the SPECjEnterprise2010 benchmark application. Pre-
dictions using this profile for two hardware environments
match energy consumption and performance measurements
with an error of mostly below 15 %.

Categories and Subject Descriptors

C.4 [Performance of Systems]: measurement techniques,
modeling techniques; D.2.8 [Software Engineering]: Met-
rics—performance measures

General Terms

Measurement; Performance

Keywords

Performance Modeling; Palladio Component Model; Resource
Profile; Energy Consumption; Capacity Planning
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1. INTRODUCTION
Enterprise applications are the backbone of many business

processes. These applications need to meet performance re-
quirements (i.e. response time, throughput, resource uti-
lization) to avoid problems during the process execution.
Detailed capacity planning effort [17] is therefore required
before new enterprise applications are deployed in a data
center. This effort is driven by a basic question: How much
hardware resources are required to fulfill performance re-
quirements for the expected workload? This question leads
to a more specific inquiry about the applications demand for
hardware resources such as central processing units (CPU),
hard disk drives (HDD) and memory. The capacity plan-
ning finally requires an assessment of the workload impact
on the resource demand.

At the same time, the rising energy consumption is a ma-
jor cost driver in data centers nowadays [8, 22]. The energy
consumption is defined as the power consumption integrated
over time. It would thus be beneficial to know how much
power will be consumed by the resources utilized by an ap-
plication in beforehand [6].

Estimating hardware requirements and energy consump-
tion of new enterprise application deployments is only pos-
sible if different parties work together [4]. First of all, enter-
prise application vendors (EAV, i.e. software or consulting
companies) need to quantify the resource demand of their
software products. Enterprise application users (EAU, i.e.
companies who source software from EAVs) need to specify
the expected workload for their use cases. Finally, enter-
prise application hosts (EAH, i.e. data center providers)
need to specify the characteristics of the hardware environ-
ment on which the applications can be deployed. Nowadays,
the communication between these parties lacks a medium in
which all these aspects are captured. The resource profile
concept introduced in this work serves as such a commu-
nication medium and helps to answer the questions raised
above.

This work proposes the use of architecture-level perfor-
mance models to represent resource profiles. The contri-
bution of this work therefore includes the resource profile
concept as a use case for these models in between their tradi-
tional application domains: software performance engineer-
ing [24] and application performance management [18]. Ad-
ditionally, an approach is presented to adapt these models
to different hardware environments. Furthermore, a perfor-
mance modeling approach is extended to allow predictions
of the energy consumption. A case study finally evaluates
the feasibility of the resource profile concept.
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Figure 1: Resource profiles for enterprise applications

2. RESOURCE PROFILES
Resource profiles are models that allow evaluating energy

consumption and performance of enterprise applications (see
figure 1(a)). In an ideal case, a resource profile is constructed
once by an EAV and can then be used by EAUs and EAHs
for several use cases as shown in figure 1(b). The intended
use cases are similar to the ones of system requirements for
end user desktop software (such as games or office tools).
System requirements show whether a user is able to run a
software on his current environment. If an end user needs to
modify his soft- or hardware environment, this often has a
huge impact on his purchasing decision. If EAUs would have
similar information at hand during a software purchasing
scenario, it would also influence their investment decisions.

2.1 Content and Structure
The energy consumption and performance of an enter-

prise application is influenced by several factors as depicted
in figure 1(a). One of the key factors is the hardware en-
vironment on which an enterprise application is deployed.
As hardware resources (e.g. the CPU) have different perfor-
mance and power consumption characteristics, the resource
demand (e.g. required CPU time) and energy consumption
of single transactions is directly dependent on the compo-
nents used within a server. Different hardware environments
thus have a big impact on the performance and energy con-
sumption of an application. Resource profiles therefore pro-
vide a means to represent different hardware environments.

Besides the hardware environment, the workload on a
system directly influences the performance and energy con-
sumption of an application. The workload of an enterprise
application is typically specified by the amount of users ac-
cessing the system and their behavior [16]. Depending on
the workload, the hardware environment is utilized on dif-
ferent levels, which lead to varying performance and energy
characteristics. Consequently, the user count and their be-
havior can be represented in a resource profile.

To evaluate the impact of different hardware environments
and workloads on energy consumption and performance, a
model is required that describes the performance-relevant
aspects of an enterprise application architecture indepen-
dently from these influencing factors. These aspects include
the components of an enterprise application, their interfaces,
relationships, control flow, parametric dependencies and re-
source demands [12]. Resource profiles describe these as-
pects independently from the workload and hardware en-
vironment. To simplify their use, the aforementioned as-

pects are hidden for resource profile users (i.e. EAU, EAH).
Resource profiles abstract these aspects on the level of de-
tail of single deployment units of an enterprise application.
These deployment units represent a collection of application
components and thus reduce the complexity for the users.
Instead of dealing with individual application components,
they can use these deployment units for specifying alloca-
tions on different hardware environments.

To represent the workload, resource profiles describe ex-
ternal interfaces provided by an enterprise application (e.g.
functionalities provided by user interfaces). These external
interfaces can be used for specifying the workload. Based
on these specifications, the influence of different workloads
and hardware environments on performance and energy con-
sumption can be evaluated as shown in figure 1(a).

The knowledge required for constructing a resource profile
and for specifying the input variables for the evaluation is
often distributed between different parties (i.e. EAV, EAU
and EAH, see figure 1(b)). Resource profiles are therefore
meant to be used differently depending on the available in-
formation. An EAV should create resource profiles for all
enterprise applications sold (off-the-shelf and custom devel-
opments), which then can be adapted by EAUs and EAHs
for their specific needs. They can modify the workload and
the hardware environment but reuse the specifications pro-
vided by an EAV.

2.2 Use Case Examples
The primary use case of a resource profile is to estimate

the required hardware resources for an enterprise applica-
tion. As this task is required in different contexts, the
following paragraphs explain some use cases in which the
transferable nature of resource profiles helps to simplify the
relationships of EAUs, EAVs and EAHs.

If an EAU is interested in a new enterprise application, he
could use the corresponding resource profile as one compo-
nent in an overall investment decision. The EAU can specify
the expected amount of users, their behavior and his existing
hardware environment to evaluate if this hardware would be
sufficient to run the application for his needs. At the same
time, the EAU could evaluate the impact of this particular
application on his energy bill. If new hardware is needed
for the application, the resource profile helps to compare
different hardware configurations in terms of their impact
on performance and energy consumption. Resource profiles
can also be used to choose between different off-the-shelf
software products with similar functionality with regard to
the above mentioned criteria.
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When software is purchased and hosted by an EAU inter-
nally, a resource profile supports the internal cost accounting
between different business units and the IT unit [3]. Using
resource profiles, the resource demand and power consump-
tion of an enterprise application can be broken down to user
profile levels or transaction classes. Brandl et al. [3] showed
how such a breakdown of the resource consumption on the
level of transaction classes can be used to allocate costs to
different business units according to their workload.

If an EAU does not want to host an application himself,
resource profiles can be used to negotiate a contract be-
tween an EAU and an EAH (e.g. cloud providers). As
cloud computing is gaining more popularity, the demand
for usage-based costing will increase [3]. Similar to the in-
ternal cost accounting approach explained above, EAUs and
EAHs could agree on a remuneration model which is directly
dependent on the resource and energy consumption of the
hosted application [13]. Resource profiles help both parties
to better estimate their costs in such a scenario.

If an enterprise application is already running in a pro-
duction environment, resource profiles help in the capacity
management process. For example, the impact of an in-
creased user load on performance and energy consumption
of an application can be examined in beforehand and appro-
priate conclusions can be drawn.

The next section explains the construction of resource pro-
files based on architecture-level performance models.

2.3 Performance Models as Resource Profiles
Evaluating the performance of an application is a common

problem in the software engineering domain. Numerous per-
formance modeling approaches have been proposed to ad-
dress this challenge [1, 12]. A performance model of an en-
terprise application typically contains performance-relevant
aspects of an application architecture, the hardware envi-
ronment and the workload. Using these models as input
for analytical solvers or simulation engines allows predict-
ing response time, throughput and resource utilization for
the modeled software system. Several case studies (see sec-
tion 4) showed the applicability of performance models for
predicting these performance metrics.

Performance models thus seem to be generally suitable
to represent resource profiles. As resource profiles must be
adapted to different target environments, a key requirement
for their representation is that performance-relevant aspects
of an application architecture, the hardware environment
and the workload can be modeled independently from each
other. In an ideal case, an EAV can model the performance-
relevant aspects of an application architecture and distribute
this incomplete model to an EAU who complements the
model with the expected workload. Afterwards, an EAH
can add the hardware environment to the resource profile.

Conventional performance modeling approaches [1] such
as Queuing Networks, Layered Queuing Networks (LQN) or
Queuing Petri Nets depict all these aspects nested in one
single monolithic performance model. It is therefore hard to
change a single aspect like the hardware environment or the
workload without needing to substantially change the whole
performance model. Architecture-level performance models
[12] try to separate these aspects to simplify the modeling
process. A popular architecture-level performance model is
the Palladio Component Model (PCM) [20]. PCM separates

all the aspects mentioned above and is thus used as meta-
model to represent resource profiles.

PCM is described by Reussner et al. [20] as a software
component model for business information systems to en-
able model-driven quality of service (QoS, i.e. performance)
predictions. A software system is represented in PCM by
several model layers which can reference each other [20].
The most important model within PCM is called repository
model. This model contains the components of a software
system and their relationships. The control flow of a com-
ponent operation, its resource demand and parametric de-
pendencies are specified in so called Resource Demanding
Service Effect Specifications (RDSEFF). Components are
assembled in a system model to represent an application.
User interactions with the system are described in a usage
model. The other two model types in PCM are the resource
environment and allocation model. A resource environment
model allows to specify available resource containers (i.e.
servers) with their associated hardware resources (CPU or
HDD). An allocation model specifies the mapping of system
model elements on resource containers.

A resource profile can thus be represented using this meta-
model by creating a system model. Such a system model
describes the external interfaces of an enterprise applica-
tion and references repository model components (includ-
ing RDSEFFs) to describe the performance-relevant aspects
of an application architecture. Several approaches to con-
struct these models, either based on design model transfor-
mations [2] or dynamic analysis [5], already exist and are
therefore not described in detail in this work. The workload
for a PCM-based resource profile can be specified in a usage
model. The hardware environment can be specified by the
resource environment model whereas the deployment on this
environment is specified in the allocation model.

Even though PCM provides a good foundation for build-
ing resource profiles, just creating a performance model is
not sufficient for supporting the structure and use cases of a
resource profile outlined earlier. The remainder of this sec-
tion therefore focuses on questions that cannot be answered
by the PCM modeling capabilities:

• How can resource profiles based on the PCM meta-
model be adapted to different hardware environments?

• How can the PCM meta-model be extended to support
energy consumption predictions?

2.4 Adapting Resource Profiles to Different
Hardware Environments

Hardware environments are specified in PCM resource en-
vironment models. An example of a resource environment
model is shown in figure 2(a). In this example, the resource
environment consists of two hardware servers which are con-
nected via a network connection. The model depicts the
CPU and HDD of both servers. The CPU of Server1 con-
sists of 16 cores (number of replicas) and the CPU of Server2
consists of 8 cores. Each core has a processing rate of 1000.
The HDDs of both servers also specify a processing rate of
1000. A processing rate of 1000 means that one CPU core re-
spectively the HDD can process 1000 units of work within a
simulated time frame. In this example, one simulated time
frame is interpreted as one second. Thus, each CPU core
and HDD can process 1000 milliseconds (ms) of work per
simulated time frame.
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(a) Resource environment model (b) Allocation model (c) RDSEFF

Power Consumption Model
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Figure 2: PCM models

An allocation model defines how system model elements
are mapped on servers in the resource environment model.
To simplify the use of a resource profile for evaluating dif-
ferent deployment options, an EAV should represent indi-
visible deployment units using composite components [20].
Composite components allow to combine several repository
model components so that they can only be allocated as a
whole and not individually. This representation ensures that
EAUs or EAHs cannot evaluate deployment options which
are not supported by an EAV. The allocation model in figure
2(b) shows the allocation of two composite components on
the two servers modeled in the resource environment model.
CompositeComponentA is mapped on Server1 and Compos-
iteComponentB on Server2.

A component implements several operations which can be
invoked by users or other components. The resource demand
of an operation is defined in internal actions of an RDSEFF.
It is specified as the amount of units of work needed on a
particular hardware resource to be processed. This resource
demand is thus modeled relative to the processing rate of a
hardware resource in the resource environment model. Fig-
ure 2(c) shows a simplified RDSEFF. The internal action
consumes 0.456 units of work on the corresponding CPU
resource and 0.263 units of work on the HDD. If this com-
ponent is mapped on a resource container with a CPU core
that can process 1000 units of work within one second, the
0.456 units of work can also be interpreted as 0.456 ms CPU
time required by the component operation. The same inter-
pretation is valid for the HDD demand.

This dependency between resource demands in RDSEFFs
and processing rates of hardware resources in resource en-
vironment models avoids the need to adapt resource de-
mands of every internal action in every RDSEFF if hard-
ware resources are changed. It is only necessary to adapt
the processing rate of modeled hardware resources if they
are replaced by other types of the same resource. If more
attributes of a hardware environment are changed (e.g. the
number of servers), the allocation model must also be changed
to map the (composite) components on the new resources.
What needs to be done to model these structural changes is
described by Reussner et al. [20].

If a resource profile is used to predict performance and
energy consumption for a hardware environment that is not
the one the resource profile was initially created with, the
profile must be adapted to the target environment. To adapt
the resource profile from one environment to another, the
processing rate of resources must be scaled according to the
performance of the hardware resources.

Following Menascé [16], the processing rate of a resource
is scaled according to the hardware benchmark results of

the initial and target hardware resource. After performing
a suitable benchmark on the initial and the target server,
we assume to get two benchmark scores of the investigated
hardware resource. The benchmark score of the initial
(binitial) and target (btarget) server and the initial process-
ing rate (rinitial) allow to calculate the new processing rate
(rtarget) for the target server’s resource as follows:

rtarget =
btarget

binitial

∗ rinitial (1)

For example, when benchmarking a specific hardware re-
source, an initial server gets a benchmark score of 40 whereas
a score of 50 is achieved on the target server. By using for-
mula 1 with an initial processing rate of 1000 a target pro-
cessing rate of 1250 can be calculated. This calculation is
possible for different hardware resources. For CPU bench-
marks it is important that the benchmark can evaluate the
performance of a single core, otherwise it is much harder to
adapt the resource environment model from one server to an-
other. If standardized benchmarks are used for this purpose,
the benchmarks must not necessarily be performed by the
user of a resource profile, as results for common hardware
systems are often available on the web sites of the bench-
mark providers. Nevertheless, processing rates and bench-
mark scores of hardware resources used to derive resource
demands need to be distributed along with a resource profile.

This approach assumes that all resource demands in the
RDSEFFs of a repository model are initially derived from
measurements on the same hardware types. Otherwise, it
would be necessary to adapt the resource demands in an
RDSEFF individually if a component is moved from one
server to another in the allocation model. Similarly, the
network traffic between all components needs to be repre-
sented in a resource profile even if the profile is created on
a single machine. Without this information, it would not
be possible to distribute components in a resource profile to
different machines connected by a network.

2.5 Predicting Energy Consumption
To the best of our knowledge, there is no performance

modeling approach available which is able to predict the
energy consumption of an application. Hence, it can also
not be predicted using PCM. As energy consumption is de-
fined as the power consumption integrated over time, the
PCM meta-model is extended by a power consumption model
element. The PCM simulation engines SimuCom [2] and
EventSim [19] are also extended to use the new power con-
sumption model element. Simulation results now allow to
evaluate the power consumption of servers in a resource en-
vironment over time. The integral of the resulting function
can be used to predict the energy consumption of an appli-
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cation. The construction of a power consumption model is
explained in the following.

PCM is already capable of predicting the utilization rate
of modeled hardware resources such as CPU or HDD. The
full server power consumption can thus be modeled based on
the utilization of the server’s hardware resources as shown
in several existing works on this topic [8, 21]. Full server
power consumption refers to the power consumed by the
power adapters of the server. As shown in section 2.2, this
is the key figure from an economic point of view.

Rivoire et al. [21] and Fan et al. [8] showed that simple
linear power models based on resource utilization metrics
produce very accurate results. Even very simple models,
which only capture the CPU utilization to predict the power
consumption, are very accurate. A linear model with the
predicted power consumption of a server as the dependent
variable Ppred and multiple resource utilization metrics as
the independent variables ui can therefore be specified by
the following equation [8, 21]:

Ppred = C0 +

i∑

1

Ci ∗ ui (2)

In PCM resource environment models a hardware server
is represented by a resource container. The new power con-
sumption model element is thus attached to the existing re-
source container meta-model element. It represents a linear
model in the form of equation 2. Figure 2(d) shows an ex-
ample of such a power consumption model for one server
with 16 CPU cores and a HDD resource. A power consump-
tion model contains a constant (C0) which represents an
approximation of the idle power consumption of a server.
The independent variables of equation 2 are represented
by multiple power consumption components. A power con-
sumption component contains a multiplication factor (Ci)
and a reference to the utilization of a hardware resource
of the resource container (ui). In the example of figure
2(d), the power consumption model represents the equation:
Ppred = 200 + 300 ∗ uCPU + 50 ∗ uHDD. A CPU utilization
of 50 % and a utilization of the HDD of 20 % would thus
lead to a predicted power consumption of 360 watts (W).

The best way to construct such a linear power consump-
tion model is a calibration run on the target hardware similar
to the approach presented by Economou et al. [7]. In a cal-
ibration run, hardware resources are stressed independently
from each other with changing intensity. Meanwhile the cor-
responding resource utilization metrics reported by the op-
erating system and the resulting power consumption of the
full server system are measured. Modern enterprise servers
implement power measurement sensors for single hardware
resources and the whole system. A common way to offer
their measurements is to use the Intelligent Platform Man-
agement Interface (IPMI)1. Thus, there is often no need to
use an external power meter device. After finishing the cal-
ibration run, a linear regression on the measured metrics is
done to generate a linear power consumption model.

3. EVALUATION
In this section, a case study using the SPECjEnterprise-

2010 industry standard benchmark demonstrates the fea-
sibility of the resource profile concept. A resource profile

1http://www.intel.com/design/servers/ipmi/

based on the extended PCM meta-model is generated for the
SPECjEnterprise20102 benchmark application on an initial
hardware environment and is adapted to a target hardware
environment by using the SPEC CPU20063 benchmark. Af-
terwards, workloads using varying amounts of users are ex-
ecuted both as a simulation using the resource profile and
on deployments on the initial and target hardware environ-
ment. The simulated and measured response time, through-
put, power consumption and resource utilization values are
afterwards compared with each other. The evaluation steps
and the quantitative validation ensure that the extended
PCM meta-model provides a solid base for representing re-
sources profiles with the properties explained in section 2.1.

3.1 SPECjEnterprise2010
The SPECjEnterprise2010 benchmark application repre-

sents business processes of an automobile manufacturer and
is divided into three different domains: the Supplier domain,
the Manufacturing domain and the Orders domain. The Or-
ders domain is used by automobile dealers to sell and order
cars. By doing so, they drive the demand for the Manufac-
turing domain. This domain simulates car manufacturing
sites. It interacts with the Supplier domain to order parts
required during the manufacturing process.

The evaluation in this paper focuses on the Orders do-
main as it is intended to be used by end users, whereas the
other two domains are used by other applications as (web-)
services. The communication between the domains is dis-
abled in order to avoid the need to model and evaluate all
domains.

The Orders domain is a Java Enterprise Edition (EE) web
application that is composed of Servlet, JavaServer Pages
(JSP) and Enterprise JavaBean (EJB) components. The
automobile dealers access this application using a web inter-
face over the hypertext transfer protocol (HTTP). The au-
tomobile dealers can perform three different business trans-
actions: Browse (B), Manage (M) and Purchase (P). These
three business transactions are composed of several HTTP
requests to the system.

The dealer interactions with the system are implemented
as benchmark driver in the Faban harness4. Faban is a load
generation framework which is used to execute load on a
SPECjEnterprise2010 deployment. For each benchmark run
one can specify the number of dealer clients that interact
with the Orders domain (benchmark scale). The official
driver is implemented in a way that the benchmark scale not
only influences the total number of clients but also the be-
havior of a single simulated client. As this is not typical for
an enterprise application, the benchmark driver is patched
so that the behavior of a dealer client is now independent of
the total number of clients.

2SPECjEnterprise is a trademark of the Standard
Performance Evaluation Corp. (SPEC). The offi-
cial web site for SPECjEnterprise2010 is located at
http://www.spec.org/jEnterprise2010.
3The SPECjEnterprise2010 and SPEC CPU2006 results or
findings in this publication have not been reviewed or ac-
cepted by SPEC, therefore no comparison nor performance
inference can be made against any published SPEC result.
The results in this publication should thus be seen as esti-
mates as the benchmark execution might deviate from offi-
cial run rules. The official web site for SPEC CPU2006 is
located at http://www.spec.org/cpu2006.
4http://java.net/projects/faban/
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Figure 3: SPECjEnterprise2010 system topology

3.2 System Topology
An overview of the system topology is given in figure 3.

The initial server, on which a resource profile represented
as a system model is created, is an IBM System X3755M3
server. This machine, hereafter referred to as AMD-based
server, contains 256 gigabytes (GB) random-access memory
(RAM) and four AMD Opteron 6172 processors with four
cores and a 2.1 GHz frequency each. The target server,
which is represented by adapting the model as explained in
section 2.4, is an IBM System X3550M3 server. This ma-
chine, hereafter referred to as Intel-based server, contains 96
GB RAM and two Intel Xeon E5645 processors with 6 cores
and a 2.4 GHz frequency each. The hyper-threading capa-
bility of the Intel processors is disabled for this evaluation.
The operating system on the AMD-based server is open-
Suse 12.2 whereas openSuse 12.3 is used on the Intel-based
server. Six JBoss Application Server (AS) 7.1.1 instances
are deployed on both servers, all running the SPECjEnter-
prise2010 benchmark application. Every AS instance uses
its own Apache Derby DB in version 10.9.1.0 as persistence
layer. The JBoss AS instances and the Apache Derby DBs
are executed within a 64 bit Java OpenJDK Server virtual
machine (VM) in version 1.7.0. The mod cluster5 web server
module is used as load balancer for the JBoss AS clusters
on a separate VM. The benchmark driver which generates
the load on the systems under test (SUT) is also deployed on
the same VM. The VM is mapped on the same type of hard-
ware server as the AMD-based server explained above using
the VMware ESXi 5.0.0 (build 469512) hypervisor. The VM
runs openSuse 12.3 as operating system and is configured to
have eight virtual CPU cores and 80 GB RAM. All servers
are connected using a one gigabit per second (Gbit/s) net-
work connection.

3.3 Creating & Adapting the Resource Profile
To construct a system model of the SPECjEnterprise2010

benchmark application on the AMD-based server, we use
an automatic performance model generation approach pre-
sented in our previous work [5]. The PCM model gener-
ator is configured to represent the CPU resource demand
in ms in the generated repository model components used
within the system. A moderate load (∼50 % CPU utiliza-
tion) is generated using the benchmark driver for a period
of 20 minutes. During this time, data is collected and after-
wards used to generate a system model for the SPECjEn-

5http://www.jboss.org/mod cluster

terprise2010 benchmark application. Details of this process
can be found in [5]. Afterwards, the system model is comple-
mented with a usage model, which represents the workload
generated by the benchmark driver, and a resource environ-
ment model that represents the hardware environment of
the AMD-based server.

As outlined in section 2.4, the RDSEFFs of repository
model components used within the system model contain
CPU demand values specific for the AMD-based server. To
adapt this information for the Intel-based server, the pro-
cessing rate of CPU cores represented in the resource en-
vironment model needs to be changed. Additionally, the
number of CPU cores needs to be reduced. SPEC CPU2006
is used to benchmark the CPU cores of both servers. The
benchmark consists of an integer (SPECint) and a float-
ing point (SPECfp) benchmark which again consist of sev-
eral sub-benchmarks [9]. To calculate the adapted process-
ing rate, the SPEC CPU2006 integer benchmark is exe-
cuted on the AMD- and Intel-based servers. The AMD-
based server achieved a benchmark score of 12.91 for the
SPECint base2006 metric. The Intel-based server achieved
a benchmark score of 18.92. By using equation 1, a process-
ing rate of 1464 is calculated for CPU cores in the adapted
resource environment model of the Intel-based server.

In a next step, power consumption models are added to the
resource environment models of the AMD- and Intel-based
servers, as explained in section 2.5. As these models only
depict the CPUs of both servers, their power consumption
models can only model the dependency between the CPU
utilization rate and the power consumption. This constraint
is acceptable as Capra et al. [6] state that the CPU consumes
the majority of the overall power of a server and the power
consumption is significantly dependent on the CPU’s uti-
lization rate. All other hardware resources consume roughly
the same amount of power independent of their utilization
rate [6].

To calibrate the power consumption models, the command
line tool lookbusy6 is used to stress the CPU. Using look-
busy the hardware resources CPU, HDD and memory can
be utilized with a fixed utilization rate. To stress the CPU,
lookbusy generates a consecutive CPU utilization in steps
of 10 % starting from 0 % to 100 %. Each utilization step
lasts for five minutes. After each step the server is kept
idle for two minutes. A self written Java tool meanwhile
captures the CPU utilization rate and the full server power
consumption using IPMI interfaces provided by the servers
every second. The IPMI power sensors used in this evalua-
tion showed some ramp-up and ramp-down effects in every
utilization step. To avoid these effects, only measurements
taken between a ramp-up phase of two minutes and a ramp-
down phase of another two minutes are used. This dataset
is used to perform a linear regression to construct a power
consumption model in the form of equation 2. The measure-
ments and the thereof derived power consumption models for
the AMD- and Intel-based servers are shown in figure 4(a)
and figure 4(b).

The system model of the SPECjEnterprise benchmark
application, complemented with a usage model describing
the benchmark driver workload and a resource environment
model representing one of the two hardware environments,
is hereafter called AMD- or Intel-based model respectively.

6http://www.devin.com/lookbusy/
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(b) Intel-based server

Figure 4: Power consumption models

3.4 Comparing Measurements & Simulations
In this section, the simulation results of the AMD- and

Intel-based models are compared with measurements on the
corresponding servers. The comparison is conducted for dif-
ferent load conditions. Four benchmark runs are executed on
both SPECjEnterprise2010 server deployments with varying
amounts of dealer clients. The number of clients is increased
in steps of 1000 from 1300 to 4300. Benchmark runs on the
AMD-based server showed that the system cannot handle
4300 concurrent dealer clients. In a benchmark run with
3500 clients the AMD-based server shows a CPU utilization
of approximately 86 % which is equal to the utilization of
the Intel-based server in a run with 4300 clients. Therefore,
the highest load level is reduced from 4300 to 3500 dealer
clients for the AMD-based server.

For each load level the AMD- and Intel-based models are
used to predict performance and energy consumption for
the respective amount of dealer clients. To simulate such
high amounts of dealer clients, the event-oriented simula-
tion engine EventSim [19] is used instead of the default
process-oriented simulation engine SimuCom [2]. EventSim
performs better under such load conditions.

For every load level a benchmark and simulation run of
30 minutes is executed. To avoid side effects during the
benchmark and simulation runs, only results during a steady
state between a five minute ramp-up and a five minute ramp-
down phase are considered in the following.

To evaluate the accuracy of the simulation results, the
measured and simulated results for each of the following met-
rics are compared: CPU utilization, power consumption as
well as response time and throughput of the three business
transactions. To measure the CPU utilization and the power
consumption, the same Java tool is used as for the construc-
tion of the power consumption models in section 3.3.

The benchmark driver reports measurements for through-
put and response time of the three business transactions
performed by the dealer clients. However, the reported re-
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Figure 5: Measured and simulated response times

sponse times cannot be used for this evaluation since they
contain the network overhead between the driver and the
SUT whereas the generated model does not include this
information. The simulated and measured response times
can thus not be compared with each other. To measure
comparable response times, a Servlet filter is used to log
the response time of each HTTP request executed during a
benchmark run. The mean response times of these HTTP
requests are used to calculate the mean response times of the
three business transactions. The measurement has an influ-
ence on the CPU utilization. To reduce this distortion, the
Servlet filter is only deployed on one of the six application
server instances. The throughput is taken directly from the
benchmark driver. It is included in this comparison as us-
ing different thread pool configurations could lead to good
response time measurements while the throughput is very
low. Therefore, the throughput comparison is important to
ensure the validity of the evaluation results.

Table 1 and figure 5(a) show the comparison of the mea-
sured and simulated results for the AMD-based server and
model. Table 1 shows for every load level specified by the
number of dealer clients (C) and for every business trans-
action (T) the Measured Throughput (MT), the Simulated
Throughput (ST), the Throughput Prediction Error (TPE),
the Measured Mean CPU Utilization (MMCPU), the Simu-
lated Mean CPU Utilization (SMCPU), the CPU Prediction
Error (CPUPE), the Measured Mean Power Consumption
(MMPC), the Simulated Mean Power Consumption (SMPC)
and the Power Consumption Prediction Error (PCPE). Fig-
ure 5(a) shows the Measured Mean Response Time (MMRT),
the Simulated Mean Response Time (SMRT) and the Re-
sponse Time Prediction Error (RTPE). Table 2 and figure
5(b) show the same measurement and simulation results for
the Intel-based server and model.

The AMD-based model predicts the response times of
the business transactions for low (1300 clients) and medium
(2300 clients) load conditions with an error below 10 %.
Under high load conditions (3300/3500 clients) the error
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Table 1: Measured and simulated results for the AMD-based server
C T MT ST TPE MMCPU SMCPU CPUPE MMPC SMPC PCPE

1300

B 78623 78557 0.08 %
33.37 % 30.04 % 9.97 % 367.55 W 320.26 W 12.87 %M 39378 39245 0.34 %

P 39259 39135 0.32 %

2300

B 139328 138383 0.68 %
57.38 % 52.89 % 7.82 % 403.87 W 352.22 W 12.79 %M 69685 70186 0.72 %

P 69932 69514 0.60 %

3300

B 200174 199166 0.50 %
82.53 % 76.00 % 7.92 % 433.76 W 384.52 W 11.35 %M 99643 99930 0.29 %

P 99673 99315 0.36 %

3500

B 211585 211314 0.13 %
86.10 % 80.59 % 6.40 % 436.47 W 390.95 W 10.43 %M 105454 105506 0.05 %

P 105708 105557 0.14 %

Table 2: Measured and simulated results for the Intel-based server
C T MT ST TPE MMCPU SMCPU CPUPE MMPC SMPC PCPE

1300

B 78502 78333 0.22 %
24.05 % 27.24 % 13.26 % 197.05 W 175.94 W 10.71 %M 39464 39376 0.22 %

P 39367 39297 0.18 %

2300

B 139603 138961 0.46 %
45.08 % 48.29 % 7.12 % 220.47 W 194.93 W 11.58 %M 69314 69490 0.25 %

P 69266 69576 0.45 %

3300

B 199517 199646 0.06 %
64.86 % 69.34 % 6.92 % 241.67 W 213.91 W 11.49 %M 99254 99936 0.69 %

P 99890 99355 0.54 %

4300

B 259548 259591 0.02 %
86.03 % 90.16 % 4.80 % 264.29 W 232.69 W 11.96 %M 130239 129641 0.46 %

P 129909 129293 0.47 %

stays below 26 %. The response time prediction of the Intel-
based model is slightly less accurate. The response times are
mostly predicted with an error below 20 %. Only the pre-
diction of the browse transaction in the case of 1300 clients
and at the highest load level with 4300 clients show devia-
tions of 31.23 % and 23.19 % respectively compared to the
measurement results.

Both models predict the throughput with an error below
1 %. This low error is caused by the fact that the aver-
age think time of a dealer client between two transactions
with approximately 9.9 seconds is much higher than the re-
sponse time of a single transaction. Thus, the prediction
errors of the response times only have a low impact on the
prediction accuracy of the throughput. The CPU utiliza-
tion is mostly predicted with an error below 10 % by both
PCM models. Only the CPU utilization prediction for the
Intel-based server in a setting with 1300 clients has a higher
error of 13.26 %. The power consumption of both servers is
predicted with an error below 13 %. As the power consump-
tion values are relatively stable during the steady state of
all load levels, the energy consumption can be predicted by
multiplying the mean power consumption values by time.

This evaluation shows that energy consumption and per-
formance of two deployments of the same enterprise applica-
tion can be predicted with an accuracy that is acceptable for
capacity planning purposes [17]. The approaches to adapt
resource profiles to different hardware environments and to
predict energy consumption using an extended PCM meta-
model could thus be validated. It is therefore technically
feasible to realize the resource profile concept.

4. RELATED WORK
The resource profile concept relates to several existing re-

search directions. This section is therefore structured ac-
cording to different directions that contribute to our work.
First, we review existing approaches to support capacity
planning for enterprise applications using performance mod-
els. Afterwards, research in the area of energy consumption
of enterprise applications is presented. Finally, approaches
that predict energy consumption and performance of enter-
prise applications are outlined. The review of related work
concludes with approaches to improve the relationships of
EAVs, EAUs and EAHs using resource demand data.

Capacity planning using performance models

A model-driven capacity planning tool suite for compo-
nent- and web service-based applications is proposed by Zhu
et al. [25]. The tool suite can be used in early software de-
sign phases to support the performance evaluation. It con-
sists of tools to transform existing design models into per-
formance models and benchmark drivers to derive resource
demands for the performance models. These performance
models and benchmarks can then be used to support ca-
pacity planning tasks. Their tooling is intended to be used
early in the development process and not as a final capacity
planning tooling, as the implementation might have different
characteristics as the generated benchmark code.

Liu et al. [14] show how LQN models can be used to
support the capacity sizing for EJB applications. In a later
work, Liu et al. [15] use LQN models to realize a capacity
sizing tool for a business process integration middleware by
taking different CPU configurations into account. The au-
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thors introduce a way to deal with different hardware envi-
ronments in the context of LQN models. They implemented
a model transformation tool which dynamically constructs
LQN models from XML documents representing the applica-
tion model on the one hand and the hardware configuration
on the other hand. However, in their current implementa-
tion one is limited to only change the processing speed of the
CPU of a server and one is not able to change the hardware
environment more radically, for example from a one server
deployment to multiple servers.

Tiwari and Nair [23] are using LQNs to predict the per-
formance of two deployments of the same Java EE sample
application. Similar to the approach in this work, they show
how the SPEC CPU benchmark can be used to adapt a LQN
model to a different hardware environment. However, as al-
ready discussed in section 2.3, LQN models do not allow to
change the workload or the hardware environment without
reconstructing the whole model. Their approach is thus less
flexible than the one proposed in this work.

Energy consumption of enterprise applications

Capra et al. [6] developed energy benchmarks for enter-
prise resource planning (ERP), customer relationship man-
agement (CRM) and database management system (DBMS)
applications. They showed that under the same workload
different applications with similar functionality have a sig-
nificant divergent energy consumption. They concluded that
energy efficiency is a quality metric that should be consid-
ered when buying or developing new software.

An overview of existing power models and metrics to de-
scribe the energy consumption of computer systems can be
found in the work of Rivoire et al. [22]. The authors show
several metrics that can be used to model the energy con-
sumption of computer systems. This work is thus not fo-
cused on the energy consumption of a specific enterprise ap-
plication but rather on the system level.

Johann et al. [10] propose methods to measure the energy
efficiency of software. The authors define energy efficiency
as the ratio of useful work done relative to the energy re-
quired for performing the work. The authors suggest to cal-
culate the energy efficiency of single methods or components
throughout the software development process to create en-
ergy efficient applications. However, even though this is a
very promising research direction it is challenging to really
measure the efficiency if the system on which an application
will be deployed has a different power profile than the one
on which the application is developed.

Jwo et al. [11] propose an energy consumption model for
enterprise applications. The authors calculate the overall
energy consumption by multiplying the time a transaction
spends on a machine with the machine’s mean power con-
sumption. As the time spend on a machine and its power
consumption is workload dependent, the resource profile ap-
proach is more flexible as it allows to include this perspec-
tive.

Combination of performance and energy prediction

One of the few examples that combines energy consump-
tion and performance prediction approaches with a busi-
ness perspective can be found in the work of Li et al. [13].
The authors propose a sizing methodology for ERP systems
which is based on closed queuing networks. Their method-
ology allows to optimize sizing decisions using multiple di-
mensions. They allow to perform Total Cost of Ownership

(TCO) decisions that include hardware purchasing as well
as energy consumption costs for new ERP systems. Unfor-
tunately, their approach is limited to ERP systems with a
predefined set of deployment options and is thus not trans-
ferable to other types of applications. However, their multi
objective optimization (MOO) approach might be an inter-
esting enhancement for the resource profile concept intro-
duced in this work as resource profiles could be used as the
input for such a MOO solver.

Relationships between EAV, EAU and EAH

The term resource profile was already used by Brandl et
al. [3] in their work on cost accounting for shared IT in-
frastructures. The authors introduce an approach to asso-
ciate resource demands to specific IT services (e.g. email)
and to store these resource demands for different user types
in service-specific vectors (called resource profiles). Using
these resource demand vectors they propose an approach to
exactly bill the service consumers by the number of users
and types of services they are using. Compared to the ap-
proach presented in this work, their resource profile concept
is mainly intended to be used to allocate costs for exist-
ing applications and services more precisely. The approach
presented in this work is intended for new applications and
services that should be integrated into a data center. How-
ever, the data in our resource profile can also be used for
the cost accounting approach presented by Brandl et al. [3].

5. CONCLUSION & FUTURE WORK
This work introduced the concept of resource profiles for

enterprise applications. Their main purpose is to simplify
the integration of new enterprise applications into data cen-
ters with given performance requirements. To achieve this
goal, resource profiles support the capacity planning pro-
cess by allowing to evaluate energy consumption and per-
formance for different workloads and hardware environments
before an enterprise application is deployed.

The required information to specify a resource profile and
the input parameters for the evaluation can be provided by
different parties such as EAVs, EAUs and EAHs. This is
achieved by leveraging PCM as meta-model to represent re-
source profiles. This meta-model is enhanced to allow pre-
dictions of the energy consumption. Additionally, an ap-
proach is presented to adapt these enhanced PCM models
to different hardware environments. The evaluation showed
that a resource profile for the SPECjEnterprise2010 bench-
mark application predicts energy consumption and perfor-
mance for two hardware environments with high accuracy.

Additional case studies are required to validate further
use cases outlined in section 2.2. To make resource profiles
better applicable in different scenarios, several extensions
are required. First of all, the representation of external sys-
tems (e.g. CRM or ERP systems) reused by an enterprise
application needs to be investigated. As resource profiles
are intended to describe a specific enterprise application,
approaches to represent external systems as black-box com-
ponents which can be replaced by EAUs or EAHs need to
be introduced.

Enterprise applications are often executed in runtime en-
vironments (e.g. Java EE servers) that are available by dif-
ferent vendors. It would be helpful for the capacity planning
if these platforms were represented explicitly in a resource
profile and could also be changed by EAUs or EAHs.
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Further extensions are required in the underlying PCM
meta-model to support the representation of varying work-
loads and to represent memory demands. The meta-model
should also be enhanced to allow representations of the power
consumption using nonlinear models. Additionally, the sim-
ulation engine EventSim needs to be enhanced to support
more elements of the PCM meta-model.

Another area of future research is better automation to
create resource profiles. Our evaluation shows how a re-
source profile can be created and adapted for Java EE appli-
cations. Other enterprise application frameworks need sim-
ilar automation. Even though the underlying performance
models could be created using different means such as static
or dynamic analysis, our future research will focus on better
dynamic analysis as these approaches tend to generate more
accurate models from a resource demand perspective.
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[17] D. A. Menascé, V. A. F. Almeida, F. Lawrence,
W. Dowdy, and L. Dowdy. Performance by Design:
Computer Capacity Planning by Example. Prentice
Hall, Upper Saddle River, New Jersey, 2004.
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