
Detecting Performance Change in Enterprise Application
Versions Using Resource Profiles

Andreas Brunnert
fortiss GmbH

Guerickestr. 25
80805 München, Germany
brunnert@fortiss.org

Helmut Krcmar
Technische Universität München

Boltzmannstr. 3
85748 Garching, Germany

krcmar@in.tum.de

ABSTRACT
Performance characteristics (i.e., response time, through-
put, resource utilization) of enterprise applications change
for each version due to feature additions, bug fixes or con-
figuration changes. Therefore, performance needs to be con-
tinuously evaluated to detect performance changes (i.e., im-
provements or regressions). This work proposes a perfor-
mance change detection process by creating and versioning
resource profiles for each application version that is being
built. Resource profiles are models that describe the re-
source demand per transaction for each component of an
enterprise application and their control flow. Combined
with workload and hardware environment models, resource
profiles can be used to predict performance. Performance
changes can be identified by comparing the performance
metrics resulting from predictions of different resource pro-
file versions (e.g., by observing an increase or decrease of
response time). The source of changes in the resulting per-
formance metrics can be identified by comparing the profiles
of different application versions. We propose and evaluate an
integration of these capabilities into a deployment pipeline
of a continuous delivery process.

Categories and Subject Descriptors
C.4 [Performance of Systems]: measurement techniques,
modeling techniques

General Terms
Measurement, Performance

Keywords
Performance Evaluation, Performance Change Detection, Pal-
ladio Component Model, Java, Enterprise Applications

1. INTRODUCTION

Performance characteristics of enterprise applications change
whenever new features or fixes are introduced during soft-
ware development [9]. Evaluating the performance impact

of such changes nowadays requires a performance test which
consumes a lot of time and resources. Due to the associated
effort and cost, performance tests are often not executed for
each version. To improve the feedback cycle during software
development, we propose a performance change detection
process for each application version that is being built.

This work proposes the use of resource profiles to realize the
performance change detection process. The term resource
profile is used to describe the resource demand per transac-
tion of an enterprise application version [3, 11]. It typically
includes central processing unit (CPU) usage, disk IO traf-
fic, memory consumption, and network bandwidth for each
component of a software system [3, 11]. In [6] we intro-
duced a concept to use sub-models of an architecture-level
performance meta-model as resource profiles. These model-
based resource profiles provide a better separation of trans-
action resource demands from the workload and hardware
environment compared to the traditional way of specifying
resource profiles using vectors [3]. They specify the resource
demand of different transactions, but also the components
involved in the transaction processing as well as their control
flow. It is furthermore possible to predict performance (i.e.,
response time, resource utilization, and throughput) using
these model-based resource profiles by extending them with
workload and hardware environment models [13].

Following the definition of Cherkasova et al. [8], perfor-
mance changes are defined as an increase or decrease of
transaction processing time. Using predictions of different
resource profile versions for the same workload and hard-
ware environment model(s), performance changes can be
identified by comparing the resulting response time predic-
tion results. If a change is detected, resource profiles can
be compared with each other to support the identification
of the root cause. To realize such a performance change de-
tection process, a resource profile version needs to exist for
each enterprise application version that is being built. Due
to this reason, we propose to integrate this change detection
process into a deployment pipeline of a continuous delivery
process as outlined in the next section.

2. DETECTING PERFORMANCE CHANGE

WITHIN A DEPLOYMENT PIPELINE
Continuous integration (CI) systems integrate independently
developed code provided by different teams and build the
overall system composed of all components involved. CI
systems help to keep the development teams in sync and to

Performance characteristics of enterprise applications change
whenever new features or fixes are introduced during soft-
ware development [9]. Evaluating the performance impact



Figure 1: Detecting performance change within a
deployment pipeline (adapted from [9])

create deployable artifacts automatically. CI systems such
as Jenkins1 are very popular nowadays as code changes that
break the build or cause problems in automated unit tests
can be identified immediately. This immediate feedback of
potential problems increases the awareness of everyone in-
volved in the development process regarding the impact of
a change on the overall system.

As compiling and building a software system is only the first
step to get a system in a state so that it can be used by its
end users, a new discipline called continuous delivery (CD)
emerged in recent years [9]. CD is defined by Humble and
Farley [9] as an extension of CI principles to the ”last mile”
to operations. A key element in their definition of CD is a so
called deployment pipeline. A deployment pipeline describes
the steps it takes from a deployable version until a program
version exists that can be used as a release candidate.

Figure 1 depicts an extended version of the deployment
pipeline defined in [9]. As a first step in this deployment
pipeline, a build is triggered by one or multiple developer
check-ins. These check-ins are used by a CI system in a so
called commit stage to build a new version of an applica-
tion and to execute a set of predefined tests. These tests
focus on low-level application programming interface (API)
tests from a developer perspective. The next stage, called
automated acceptance test, evaluates if an application that
is being built really delivers value to a customer. A set of
regression tests is being executed to evaluate the function-
ality from an end-user perspective. Humble and Farley [9]
suggest that afterwards an automated capacity test should
occur. If the capacity test results are acceptable, the new
version is being tested manually before it is released as can-
didate for production deployment. It is important to note,
that continuous delivery does not imply continuous deploy-
ment, and does not automatically deploy a release candidate
to production.

This work proposes a performance change detection process
using resource profiles as an alternative to the capacity test-
ing step within such a deployment pipeline (see figure 1).
Such an integration not only helps to ensure that a resource
profile is created for every build but also to identify the
cause of a performance change. As the source code changes
included in a specific build are known, they can be specifi-
cally analyzed whenever a performance change is detected.
The steps of the performance change detection process are
outlined in the following section.

1http://jenkins-ci.org/

2.1 Performance Change Detection
In their description of the capacity tests within the deploy-
ment pipeline, Humble and Farley [9] define capacity as the
maximum throughput a system can achieve with given re-
sponse time thresholds for different transaction types. This
definition implies that a system needs to be available dur-
ing the automated capacity testing step which is compara-
ble to the final production environment. Otherwise, results
from capacity tests according to their capacity definition
would not yield meaningful results. This precondition is
often not given in development projects [4], because repre-
sentative test environments are shared between projects to
reduce cost. The immediate feedback that is promised by
CD systems can, thus, often not be guaranteed using this
approach, as only smaller scale systems are available. The
capacity test results derived from such systems are hardly
comparable to a production environment.

Using resource profiles, performance can be predicted for
hardware environments with more resources (e.g., CPUs)
than the ones that are available [6]. Furthermore, resource
profiles can be adapted to a hardware environment which
is more comparable to the production environment using
an approach presented in [6]. These abilities speed up the
feedback loop and allow for performance evaluations that
would be otherwise impossible. Real capacity tests can then
be executed later in the process or as a manual test step,
when appropriate systems are available.

Detecting performance change using resource profiles requires
the following steps: In a first step, a resource profile for the
current application version needs to be created. This re-
source profile version must be put into a versioning reposi-
tory to make it available for subsequent builds. Afterwards,
performance is predicted using the current version and the
results are compared with prediction results from a previous
version to see if a performance change occurred. If a change
is detected, a notification is sent to the development team(s).
The next sections explain how these steps are realized and
integrated into a continuous delivery process.

2.2 Creating Resource Profiles
We propose the use of dynamic analysis to collect measure-
ments during the automated acceptance test execution to
create resource profiles. This approach has several advan-
tages, apart from the fact that it saves time compared to a
separate measurement run (according to Humble and Farley
[9], acceptance tests usually take several hours to complete):
Transactions that are being tested and executed in the ac-
ceptance test stage are expected to be close to the behavior
of the users [9]. Using measurements from the acceptance
tests also ensures that the workload stays relatively stable as
the regression tests are executed for every build. The mea-
surement results for each build are, therefore, comparable.

As mentioned in the introduction, a model-based resource
profile of an enterprise application is represented using ar-
chitecture-level performance models [6]. We use the Pal-
ladio Component Model (PCM) as meta-model to repre-
sent resource profiles [2]. The PCM meta-model represents
the performance-relevant aspects of a software system sep-
arately from the workload and the hardware environment.
Performance-relevant aspects of a software system are repre-



sented in a so called repository model. This model contains
components of a software system and their relationships.
The control flow of a component operation, its resource de-
mand and parametric dependencies are also specified in this
model. Components are assembled in a system model to
represent an application. We use the system model to group
components by the deployment units they belong to, to sim-
plify their use [6]. The workload on a system is described in
a usage model. The remaining two model types in PCM de-
scribe the hardware environment: A resource environment
model allows to specify available resource containers (i.e.,
servers) with their associated hardware resources (e.g., CPU
or HDD). An allocation model specifies the mapping of sys-
tem model elements on resource containers. A resource pro-
file for an enterprise application can thus be represented by
a repository together with a system model [6].

Several ways to generate these two PCM model types either
based on static [1] or dynamic analysis [5] exist. We do not
explain a specific model generation approach in this section
to focus on the conceptual use of resource profiles for the
purpose of detecting performance change2. However, for the
purpose of identifying performance change, it is only feasible
to use approaches that use measurement data from dynamic
analysis. Otherwise, the required resource demand values
for representing a resource profile would be missing [17].

2.3 Versioning Resource Profiles
Each reusable artifact that is created within the deployment
pipeline is stored in a so called artifact repository [9]. This is
necessary to make each artifact available in different steps of
the deployment pipeline. To detect performance change, we
do not only need the resource profile of the current version
but also the one of previous builds. Therefore, each resource
profile version that is created in the deployment pipeline
is stored in an artifact repository that allows to manage
different resource profile versions.

As PCM is based on the Eclipse Modeling Framework (EMF)3,
all performance models conform not only to the PCM meta-
model but also to the Ecore meta-model defined by EMF.
We are leveraging this capability by using the EMFStore
[12], which already implements the required versioning fea-
tures for models based on the Ecore meta-model.

The advantage of using EMFStore compared to other ver-
sioning systems is that it is especially designed to support
the semantic versioning of models [12]. Instead of working
with textual representations of the models in existing sys-
tems, EMFStore uses the Ecore model elements and their
relationships to manage models stored in the repository. For
example, instead of representing a structural change between
two model versions as multiple lines in their textual repre-
sentation, EMFStore directly stores the change in the Ecore
model itself [12]. The only two PCM model layers that are
currently stored and versioned in the EMFStore automati-
cally are the repository and system models.

2An exemplary approach for generating resource profiles for
Java Enterprise Edition (EE) applications is used in the eval-
uation section to validate this process.
3http://www.eclipse.org/modeling/emf/

2.4 Predicting Performance
Using PCM-based resource profiles, performance predictions
can be made for different workload and hardware environ-
ment models. These predictions include results for the per-
formance metrics response time, throughput and resource
utilization. As performance change is defined as changes in
the transaction processing time, response times in the pre-
diction results are used as an indicator for change.

To enable comparable predictions in the deployment pipeline,
workload and hardware environment models for performance
predictions need to be statically defined. As explained in
the previous section, the workload on a system can be rep-
resented using usage models. The hardware environment is
represented using resource environment and allocation mod-
els. The artifact repository therefore needs to contain usage
models as representation of different workloads, which use
the external interfaces provided by the system model of a
resource profile to specify the load. It furthermore needs to
contain one or more resource environment models specify-
ing the available servers and corresponding allocation mod-
els which define the mapping of deployment units specified
in a resource profile to the servers.

Before performance can be predicted, a lookup needs to
be made in the artifact repository to get the correspond-
ing workload and hardware environment models. The work-
load and hardware environment models are combined with a
resource profile to predict performance. If a hardware envi-
ronment should be used with different hardware components
than the one the resource profile was created on, the pro-
cessing rates of the hardware resources need to be specified
relative to the original ones. One approach to do that is to
use benchmark results for the source and target hardware
as shown in [6].

2.5 Comparing Prediction Results
To detect performance change, performance is predicted with
the current resource profile version and a specified set of
hardware environment and workload models. If a previous
resource profile version for the same application is available,
the same predictions are executed using the previous version.
Afterwards, the prediction results are compared. The rea-
son for executing the predictions with the previous resource
profile version again is to ensure that the same workloads
and hardware environments are used. This avoids situations
in which changes in the workload or hardware environment
models lead to incorrect results.

For each transaction, the relative predicted response time
change between the current and the previous application
version is calculated. As a prediction results in multiple re-
sponse time values over time, this set of transaction response
time values can be represented in multiple ways [10]. The
most common ones are mean values including distances from
the mean (e.g., standard deviation) as well as percentiles
(e.g., 50th (median) or 90th percentile). Which one of these
values represents a response time set best depends on the
dispersion of the underlying distribution [10]. The disper-
sion of the underlying distribution can change between the
response time sets collected for the same transaction in dif-
ferent versions. To account for this fact while making the
results comparable between versions, the relative change is



always calculated for mean and median values as well as for
90th percentiles.

We propose to calculate the relative change (rc) as shown in
equation 1. In this equation, the transaction response time
(rt) predictions of the current and previous resource profile
versions are compared with each other. The resulting change
value indicates whether the response time is now higher than
before if the value is positive or lower if the value is negative.

rc =
rtcurrent − rtprevious

rtprevious
(1)

If the relative change for at least one transaction is higher
than a specified threshold (e.g., above 20 % increase or de-
crease) a notification (e.g., as email from the build system)
is being sent to the developer(s). If response time increased
above a specified threshold the deployment pipeline needs to
be stopped. It is important to stop the pipeline in this case,
so that the application version is not marked as stable. This
ensures, that the next build will be compared with a valid
resource profile of a version with meaningful performance.

To enable a distinction between runs with and without chang-
es, the corresponding resource profile versions need to be
managed independently within the EMFStore and a resource
profile should only be marked as usable for subsequent builds
if the relative change is below the specified threshold.

To identify trends, a comparison can also be made against
the resource profiles of more than one of the last successful
builds. This avoids situations in which performance regres-
sions develop slowly across multiple builds.

2.6 Comparing Resource Profiles
Users can access, analyze and edit models in the EMFS-
tore using a plugin for the PCM modeling environment4.
Due to this reason, resource profile versions in the artifact
repository are directly accessible to developers when they
are notified about a performance change. The notification
could also include a link to the corresponding resource pro-
file versions. Each resource profile in the EMFStore can be
analyzed over time to see which components, relationships
or resource demands are associated with specific versions
stored in the repository.

As resource profiles for normal application versions and for
versions with performance changes are managed indepen-
dently from each other in the EMFStore, one cannot easily
analyze the differences between these versions. For this pur-
pose, one can compare the different resource profile versions
using the EMF Compare framework5. EMF Compare al-
lows to automatically analyze and visualize the differences
between models conforming to the Ecore meta-model.

The level of available detail depends on the resource profile
generation approach, but we assume that the components
a system is composed of, their operations and their rela-
tionships are represented in the model [18], including corre-

4http://www.palladio-simulator.com/
5http://www.eclipse.org/emf/compare/

sponding resource demands. Therefore, the result of a com-
parison reveals changes in resource demands, control flows
and component operations. Using this information, the de-
velopers can identify the sources for a performance change.
Combined with the information, which changes have been
performed during the check-ins that initiated the build, it
should help the developer to identify the cause of a perfor-
mance change.

3. EVALUATION
This section evaluates the performance change detection pro-
cess within a deployment pipeline as explained in section 2.
Section 3.1 describes the setup of the build and test system
for this evaluation. Afterwards, the evaluation steps using
these systems are explained in section 3.2.

3.1 Build and Test System
The evaluation in this paper uses a SPECjEnterprise20106

benchmark application called Orders domain as an exem-
plary enterprise application. The advantage of using a bench-
mark application is that the benchmark specifies a workload
as well a dataset for test runs so that they can be easily re-
peated by others. The Orders domain is a Java EE web
application that is composed of Servlet, JavaServer Pages
(JSP) and Enterprise JavaBean (EJB) components. Users
access this application using a web interface over the hyper-
text transfer protocol (HTTP) and can perform three dif-
ferent business transactions: browse, manage and purchase.
These three business transactions are composed of several
HTTP requests to the system.

The experiment setup consists of two virtual machines (VM).
One VM, called build system, is used to execute the build
and test tasks within the deployment pipeline. The other
VM, called test system, is used to host the Orders domain
deployment. These two virtual machines are mapped to two
different hardware servers (IBM System X3755M3). The
hardware servers are connected using a one gigabit-per-second
network connection. Both virtual machines run openSuse
12.3 64bit as operating system and have four virtual CPU
cores and 40 gigabytes of random-access memory.

The deployment pipeline on the build system is implemented
as projects in the CI system Jenkins. A first project builds
the Orders domain. If the build was successful, the new
Orders domain version is deployed on the test system in a
second project. The application is deployed on a GlassFish
Application Server (AS) Open Source Edition 4.0 (build 89)
in the Java EE 7.0 full profile. The database on the test
system VM is an Apache Derby DB in version 10.9.1.0. The
GlassFish AS and the Apache Derby DB are both executed
in the same 64 bit Java OpenJDK VM (JVM version 1.7.0).

Once the deployment is completed successfully, a third project
executes automated acceptance tests. For that purpose, test
scripts are used that are provided by the benchmark. These

6SPECjEnterprise is a trademark of the Standard Perfor-
mance Evaluation Corp. (SPEC). The SPECjEnterprise-
2010 results or findings in this publication have not been
reviewed or accepted by SPEC, therefore no comparison nor
performance inference can be made against any published
SPEC result. The official web site for SPECjEnterprise2010
is located at http://www.spec.org/jEnterprise2010.



test scripts describe the user interactions with the Orders
domain and are implemented to run within the Faban har-
ness7. Faban is a workload creation and execution frame-
work. These tests are no acceptance tests in the traditional
sense, but they exercise the system in a way a normal user
would and are, thus, comparable.

If the acceptance tests complete successfully, a forth project
in the CI system triggers the generation of a resource pro-
file. An automatic performance model generation approach
for Java EE applications introduced in [5] is used to generate
resource profiles for the Orders domain application. This ap-
proach uses runtime instrumentation to collect data for the
model generation. Resource profiles are generated based on
the data collected during the acceptance tests. These pro-
files are stored and versioned in an EMFStore server run-
ning on the build system. The last steps in the deployment
pipeline shown in figure 1 are not automated.

3.2 Evaluation Steps
1.) In a first step, the automated steps of the deployment
pipeline are executed for the standard version of the Orders
domain application.

2.) In a second step, the Orders domain application is mod-
ified and the automated steps of the deployment pipeline
are triggered again. In this version, the performance char-
acteristics of two application components are modified by
increasing their resource consumption.

3.) Before we continue to identify performance change be-
tween both application versions, the prediction accuracy of
both resource profiles is evaluated. To do that, prediction
results of both resource profiles are compared with measure-
ments of their corresponding application versions deployed
on the test system.

4.) To identify performance change, we are using the re-
source profiles of both versions. They are used to predict
response times for predefined workloads and one hardware
environment. The expected result is, that an increase of
response time and thus a regression in performance can be
observed. To identify the root cause, the resource profile ver-
sions are compared directly to see if the change introduced in
the second application version is visible in this comparison.

3.3 Creating and Versioning Resource Profiles
Once the standard version of the SPECjEnterprise2010 Or-
ders domain application is being built and deployed on the
instrumented test system, acceptance tests are executed.
These tests are executed with 600 concurrent users for 20
minutes while data is only collected between a five minute
ramp up and a five minute ramp down phase. All of the fol-
lowing test runs are executed using the same duration. Once
the test is completed, a command line utility is triggered by
the build system that implements the approach presented
in [5] and generates a resource profile for this application
version and stores it in the EMFStore.

In a second step, an updated version of the Orders domain
application is being built and deployed on the test system.

7http://java.net/projects/faban/

The updated version is modified so that two components
of the application consume more CPU time than in their
original versions. Another test run with 600 concurrent users
is then executed using the updated version. Afterwards, a
new version of the resource profile is generated and stored
in the EMFStore.

The resource profile for the original Orders domain applica-
tion is hereafter called resource profile version one and the
second resource profile for the modified application is here-
after called version two. To evaluate performance for both
application versions, usage and hardware environment mod-
els are predefined. The usage model is created following the
source code of the test scripts in the Faban harness. The
hardware environment models represent the test system.

3.4 Evaluating the Accuracy of Resource

Profile Predictions
To evaluate the prediction accuracy of the generated re-
source profile versions (V), they are used to predict the
performance of the corresponding application versions un-
der different workload conditions. The same workloads are
executed as test runs using the corresponding application
versions. Afterwards, the measured results are compared
with the predicted results. This comparison includes the
response time and throughput of the business transactions
(T) browse (B), manage (M) and purchase (P) as well as the
CPU utilization of the test system.

The workload for this comparison is increased in steps of
200 concurrent users (U) from 600 to 1200 (∼47 % to ∼90 %
CPU utilization). To predict the performance of the applica-
tion versions, the corresponding resource profiles including
the workload and hardware environment models are used
as input for the simulation engine SimuCom [2]. SimuCom
performs a model-to-text transformation to generate Java
code based on PCM models. This Java code is afterwards
executed to start a simulation. The simulation duration is
set to 20 minutes while only data between a five minute
ramp up and five minute ramp down phase is used for the
calculation of the simulation results.

The simulation results for the resource profile versions one
and two are shown in boxplot diagrams8 in figures 2(a), 2(b)
and in table 1. Response time measurement and simulation
results are described using mean and median values as well
as measures of dispersion, namely the quartiles and the in-
terquartile range (IQR). Variance and standard deviation
are excluded from our investigation due to the skewness of
the underlying distributions [10] of the response times of
browse, manage and purchase. For each load condition spec-
ified by the number of users, figures 2(a) and 2(b) show the
dispersion of the simulated response time (SRT) per business
transaction. The simulated mean response times (SMRT),

8Boxplot diagrams consist of a box whose bounds denote
the first quartile Q1 (lower bound) as well as the third quar-
tile Q3 (upper bound) of the underlying data sample. The
quartiles are connected by vertical lines to form the box that
indicates the IQR which is defined as Q3−Q1. Furthermore,
the median Q2 is illustrated by a horizontal line within the
box, thus separating it into two parts. Vertical lines outside
the box (whiskers) indicate the range of possible outliers
while their length is limited to 1.5 times the IQR.



(a) Application and resource profile version one (b) Application and resource profile version two

Figure 2: Measured and simulated response times

the simulated mean CPU utilization (SMCPU) and the sim-
ulated throughput (ST) can be found in table 1.

In the same way as the simulations, the tests run 20 min-
utes and the data for this comparison is collected in a steady
state between a five minute ramp up and a five minute ramp
down phase. The measured mean CPU utilization (MM-
CPU) of the test system is measured during this time using
the system activity reporter. Only the measured throughput
(MT) values are directly taken from the Faban harness. As
the simulated values do not contain the network overhead
between the build and the test system, the response time
values of the business transactions are calculated based on
measurements performed directly on the test system. For
this purpose, the response times of HTTP requests executed
by the Orders domain users on the test system are measured
during the test execution using a Servlet filter [5, 15]. The
response times of the single HTTP requests are then used
to calculate the measured response time (MRT) values for
the business transactions shown in the boxplot diagrams in
figures 2(a) and 2(b). The measured mean response times
(MMRT) are shown in table 1.

The comparison of the simulated and measured results shows
that both resource profiles do represent their corresponding
application versions very well. The highest relative response
time prediction error (RTPE) for the mean response time
values is 15.99 % for the browse transaction and a load of
1000 concurrent users. The median values support this re-
sult as the relative prediction error for the median values
is at most 21 % for the browse and purchase transactions.
For the manage transaction, the relative error of the median
values goes up to 52 % for a load of 1200 concurrent users
in the second resource profile version.

The skewness of a business transaction’s underlying response
time distribution can be determined considering the me-
dian’s position between the quartilesQ1 and Q3. The results
show that the skewness of the underlying distribution is not
always correctly represented. This is especially the case for
manage, as the first quartile Q1 is predicted by the simula-
tion with a relative error of up to 112 %, which is already
caused by an absolute error of 7.32 milliseconds (ms). The

first quartile Q1 for the browse and purchase transactions
is mostly represented with a relative error below 22 %, only
for a load of 1200 users, the relative error for the purchase
transaction in the predictions with the first resource profile
version goes up to 32 %. The third quartile Q3 is predicted
with a relative error of at most 26 % for all transactions.

The relative throughput prediction error (TPE) is at most
3.95 % (see table 1). This validates the results but is ex-
pected, as the think time for each user is much higher (9.8
seconds) than the response time measurement and simula-
tion results shown in figures 2(a) and 2(b). The impact of
response time prediction errors on the throughput is thus
very low.

The relative CPU utilization prediction error (CPUPE) is at
most 11.12 % (see table 1). The simulated CPU utilization
is below the measured CPU utilization in low load levels
(600 and 800 concurrent users), as the garbage collection
overhead and other JVM activities are not represented in
the resource profiles [5, 6]. In high load conditions (1000
and 1200 concurrent users) the simulated values are slightly
higher than the measured values. The data collection over-
head included in the resource demands of the model elements
[5] thus seems to balance the influence of aspects not repre-
sented in the resource profiles in high load conditions.

3.5 Comparing Prediction Results and

Resource Profile Versions
The prediction results of the two resource profile versions
are now compared with each other to identify performance
change. As shown in figure 3(a), the response times of all
transactions increased from version one to two, even though
the median response time values of manage show a slight
decrease for low load levels (600 and 800 users). It is fur-
thermore visible that the purchase transaction response time
increased in all load levels. The mean, median and 90th per-
centile values for this transaction increased by at least 66 %
and up to 137 %. Therefore, the results show a clear regres-
sion for the purchase transaction.

Using a plugin in the PCM modeling environment we ac-



Table 1: Measured and simulated results for resource profile versions one and two
V U T MMRT SMRT RTPE MT ST TPE MMCPU SMCPU CPUPE

1

600
B 49.95 ms 53.13 ms 6.38% 18,027 18,328 1.67%

47.48 % 43.12 % 9.18 %M 17.90 ms 16.51 ms 7.72% 8,970 8,989 0.21%
P 14.03 ms 14.53 ms 3.56% 8,946 9,275 3.68%

800
B 51.82 ms 54.05 ms 4.31% 24,332 24,524 0.79%

59.81 % 57.60 % 3.70 %M 18.28 ms 16.93 ms 7.39% 11,912 12,066 1.29%
P 14.25 ms 14.76 ms 3.60% 11,972 12,194 1.85%

1000
B 59.13 ms 62.91 ms 6.40% 30,274 30,454 0.68%

71.26 % 71.76 % 0.70 %M 21.66 ms 19.64 ms 9.33% 15,081 15,281 1.33%
P 16.19 ms 17.05 ms 5.31% 15,122 15,252 0.86%

1200
B 88.57 ms 98.78 ms 11.53% 36,389 36,497 0.30%

81.17 % 85.97 % 5.92 %M 35.45 ms 30.92 ms 12.79% 17,836 18,540 3.95%
P 27.38 ms 26.97 ms 1.51% 18,119 17,975 0.79%

2

600
B 49.50 ms 54.45 ms 9.99% 18,196 18,442 1.35%

51.65 % 45.90 % 11.12 %M 17.80 ms 16.83 ms 5.45% 9,078 9,124 0.51%
P 24.48 ms 24.20 ms 1.15% 9,146 9,016 1.42%

800
B 52.69 ms 56.80 ms 7.81% 24,308 24,332 0.10%

63.51 % 61.01 % 3.93 %M 18.41 ms 17.46 ms 5.15% 12,118 12,165 0.39%
P 25.76 ms 25.49 ms 1.05% 12,034 12,292 2.14%

1000
B 61.85 ms 71.74 ms 15.99% 30,379 30,326 0.17%

73.98 % 76.05 % 2.81 %M 23.71 ms 22.49 ms 5.14% 14,880 15,406 3.53%
P 29.74 ms 32.31 ms 8.62% 15,021 15,186 1.10%

1200
B 120.88 ms 136.82 ms 13.19% 36,318 36,394 0.21%

86.68 % 90.98 % 4.97 %M 49.18 ms 42.16 ms 14.27% 18,010 18,106 0.53%
P 63.24 ms 61.24 ms 3.15% 18,271 18,273 0.01%

(a) Relative change between both resource profile versions

(b) EMF Compare result

Figure 3: Comparison results

cessed the EMFStore that contains both resource profile ver-
sions and looked at their differences using EMF Compare. A
screenshot of one comparison result can be found in figure
3(b). This screenshot shows, that the CPU resource de-
mand of one component operation (1.48 ms) is about twelve
times higher than the one of the previous version (0.12 ms).
A similar result is visible in two components involved in
the control flow of requests within the purchase transaction.
Comparing the resource profiles, thus, helped to identify the
places which caused the performance regression.

4. RELATED WORK
Mi et al. [14] and Cherkasova et al. [7] have already iden-
tified the need to evaluate the performance changes in each
enterprise application version. For this purpose, the authors
propose to create so called application signatures and com-
pare the performance characteristics of each application ver-
sion using their corresponding signatures. Application sig-
natures are a representation of transaction processing times
relative to the resource utilization for a specific workload.
The authors extend their approach in [8] by using perfor-
mance modeling techniques to not only detect performance
changes based on response times but also to evaluate perfor-
mance anomalies in the CPU demand of transactions. Their
work is focused on systems that are already in production.
This work extends the idea of evaluating the change in per-
formance of each application version to the development pro-
cess. Furthermore, we propose the use of resource profiles
instead of application signatures. Resource profiles allow for
more flexible evaluations as they can be used to derive these
metrics for different workloads and hardware environments.
It is thus possible to derive more meaningful metrics with
smaller systems as it would be possible using application
signatures. This is important for performance evaluations
during software development, as performance test environ-
ments might not be available [4].

An approach to detect performance regressions of different
versions of a software system during development has been
proposed by Nguyen et al. [16]. The authors propose the use
of control charts to identify whether results of a performance
test indicate a regression or not. Their approach focuses on
the automatic detection of regressions based on performance
test results. It could be used to evaluate prediction results
based on resource profiles. However, their approach requires



a real performance test and does not support the detection
of possible problem causes as is possible by comparing re-
source profiles. It furthermore assumes a linear relationship
between the resulting performance metrics and the load on
a system, which might not always be true.

5. CONCLUSION AND FUTURE WORK
Detecting performance change as part of a deployment pipe-
line provides immediate feedback to developers about the
impact of a change on the performance of an overall enter-
prise application. The performance metrics and their rel-
ative change values indicate whether an application is on
track to achieve the required performance goals. Compared
to a performance evaluation solely at the end of the software
development process, the suggested approach allows track-
ing and improving the performance along with the function-
ality in the process.

The evaluation results validate the performance change de-
tection process within a deployment pipeline for a Java EE
application. However, there are some limitations of the ap-
proach that need to be dealt with in future work. As of
today, performance change can only be detected when the
resource demand type which causes a performance change
is also represented in a resource profile. As representing
memory is currently not fully supported by the underlying
meta-model, changes caused by different memory consump-
tion characteristics are not detectable yet.

An additional open challenge is that external interfaces of an
application can change between enterprise application ver-
sions. If one resource profile version breaks the compatibility
with the interfaces used by the workload specifications in the
artifact repository, the change detection will stop working as
long as the usage models are not modified. Even if a corre-
sponding modification is made, the new usage models will
no longer be compatible with the previous versions.

Another direction of future work is to automate the com-
plete performance change detection process and to integrate
it as a plugin in CI/CD systems. Furthermore, the steps
of comparing different resource profile versions and identify-
ing the problem causes should be handled automatically. It
might also be interesting to use information about check-ins
that are included in a build to perform static analysis to
improve the search process for the reasons of a change.

6. REFERENCES
[1] S. Becker. Coupled Model Transformations for QoS

Enabled Component-Based Software Design. Karlsruhe
Series on Software Quality. Universitätsverlag
Karlsruhe, 2008.

[2] S. Becker, H. Koziolek, and R. Reussner. The palladio
component model for model-driven performance
prediction. Journal of Systems and Software,
82(1):3–22, 2009.

[3] R. Brandl, M. Bichler, and M. Ströbel. Cost
accounting for shared it infrastructures.
WIRTSCHAFTSINFORMATIK, 49(2):83–94, 2007.

[4] A. Brunnert, C. Vögele, A. Danciu, M. Pfaff,
M. Mayer, and H. Krcmar. Performance management
work. Business & Information Systems Engineering,

6(3):177–179, 2014.

[5] A. Brunnert, C. Vögele, and H. Krcmar. Automatic
performance model generation for java enterprise
edition (ee) applications. In M. S. Balsamo, W. J.
Knottenbelt, and A. Marin, editors, Computer
Performance Engineering, volume 8168 of Lecture
Notes in Computer Science, pages 74–88. Springer
Berlin Heidelberg, 2013.

[6] A. Brunnert, K. Wischer, and H. Krcmar. Using
architecture-level performance models as resource
profiles for enterprise applications. In Proceedings of
the 10th International ACM Sigsoft Conference on
Quality of Software Architectures, QoSA ’14, pages
53–62, New York, NY, USA, 2014. ACM.

[7] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and
E. Smirni. Anomaly? application change? or workload
change? towards automated detection of application
performance anomaly and change. In Proceedings of
the IEEE International Conference on Dependable
Systems and Networks, DSN ’08, pages 452–461, 2008.

[8] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and
E. Smirni. Automated anomaly detection and
performance modeling of enterprise applications. ACM
Transactions on Computer Systems, 27(3):6:1–6:32,
Nov. 2009.

[9] J. Humble and D. Farley. Continuous Delivery:
Reliable Software Releases Through Build, Test, and
Deployment Automation. Addison-Wesley
Professional, 1st edition, 2010.

[10] R. Jain. The Art of Computer Systems Performance
Analysis. John Wiley & Sons, Inc., 1991.

[11] B. King. Performance Assurance for IT Systems.
Taylor & Francis, 2004.

[12] M. Koegel and J. Helming. Emfstore: A model
repository for emf models. In Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering - Volume 2, ICSE ’10, pages 307–308,
New York, NY, USA, 2010. ACM.

[13] H. Koziolek. Performance evaluation of
component-based software systems: A survey.
Performance Evaluation, 67(8):634–658, 2010.

[14] N. Mi, L. Cherkasova, K. Ozonat, J. Symons, and
E. Smirni. Analysis of application performance and its
change via representative application signatures. In
IEEE Network Operations and Management
Symposium, NOMS ’08, pages 216–223, 2008.

[15] R. Mordani. Java servlet specification v2.5, 2007.

[16] T. H. Nguyen, B. Adams, Z. M. Jiang, A. E. Hassan,
M. Nasser, and P. Flora. Automated detection of
performance regressions using statistical process
control techniques. In Proceedings of the 3rd
ACM/SPEC International Conference on
Performance Engineering, ICPE ’12, pages 299–310,
New York, NY, USA, 2012. ACM.

[17] S. Spinner, G. Casale, X. Zhu, and S. Kounev.
Librede: A library for resource demand estimation. In
Proceedings of the 5th ACM/SPEC International
Conference on Performance Engineering, ICPE ’14,
pages 227–228, New York, NY, USA, 2014. ACM.

[18] X. Wu and M. Woodside. Performance modeling from
software components. SIGSOFT Software Engineering
Notes, 29(1):290–301, 2004.


