
Model-Based Performance Evaluations in
Continuous Delivery Pipelines

Markus Dlugi, Andreas Brunnert
fortiss GmbH

Guerickestr. 25
80805 Munich, Germany

{dlugi|brunnert}@fortiss.org

Helmut Krcmar
Technische Universität München

Boltzmannstr. 3
85748 Garching, Germany

krcmar@in.tum.de

ABSTRACT
In order to increase the frequency of software releases and
to improve their quality, continuous integration (CI) systems
became widely used in recent years. Unfortunately, it is not
easy to evaluate the performance of a software release in
such systems. One of the main reasons for this difficulty is
often the lack of a test environment that is comparable to a
production system. Performance models can help in this sce-
nario by eliminating the need for a production-sized environ-
ment. Building upon these capabilities of performance mod-
els, we have introduced a model-based performance change
detection process for continuous delivery pipelines in a pre-
vious work. This work presents an implementation of the
process as plug-in for the CI system Jenkins.

Categories and Subject Descriptors
C.4 [Performance of Systems]: measurement techniques,
modeling techniques

General Terms
Measurement, Performance

Keywords
Performance Evaluation, Performance Change Detection, Pal-
ladio Component Model, Continuous Delivery

1. INTRODUCTION
The modern software engineering landscape has been re-

shaped significantly in recent years by new paradigms such
as agile software development. This led to a shift from the
traditional model of releasing new features in few, major ver-
sions to rapid release cycles pushing new features and bug
fixes to the user in increasingly shorter intervals. In order
to support such short release cycles and still ensure adher-
ence to all requirements during the entire development pro-
cess, new concepts like continuous integration (CI), continu-
ous delivery (CD) or continuous deployment have emerged.

However, while functional requirements are rigorously eval-
uated in these systems to avoid breaking the application,
non-functional requirements like performance (i.e., response
time, utilization and throughput) are only rarely examined.
In the case of software performance, one frequent reason for
this is the lack of an adequate performance test environment
[3]. Performance models such as the Palladio Component
Model (PCM) [1] bear the potential to help in this scenario.
By automatically generating a performance model and run-
ning a simulation, a prediction of an enterprise application’s
(EA) performance can be made which is independent of the
environment used to generate the model [4]. By integrating
such a model-based performance evaluation process into a
CD deployment pipeline, changes in an EA’s performance
can be detected for every build of the EA. This capability
reduces development costs and risks as performance regres-
sions introduced by new features or bugs can be detected
immediately, thus avoiding expensive fixes once the EA is in
production.

This work presents the integration of an existing per-
formance change detection process [2] into Jenkins1 as an
exemplary CI system. It builds upon the previous work
that demonstrated the feasibility of such an approach and
presents an integrated tool for the whole process.

2. CONTINUOUS INTEGRATION,
DELIVERY & DEPLOYMENT

CI describes the practice of ensuring a usable application
during all stages of the development process [5]. This means
that every time a developer commits their changes, they
are instantly integrated with the rest of the application and
acceptance tests are performed to guarantee the soundness
and stability of the system.

CD takes the idea of CI one step further and demands that
the application not only be usable, but also in a deployable
state for every successful release candidate [5]. A key con-
cept of CD is a so-called deployment pipeline. It consists of
multiple steps such as acceptance testing, capacity testing
or packaging to produce a deployable artifact in the end.

Finally, continuous deployment is the practice of actually
deploying every application version that has passed the nec-
essary tests to production [5].

3. PERFORMANCE CHANGE DETECTION
The tool for performance change detection is realized as

a Jenkins plug-in. The process necessary for providing the

1http://jenkins-ci.org

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

QUDOS’15, September 1, 2015, Bergamo, Italy
ACM. 978-1-4503-3817-2/15/09...
http://dx.doi.org/10.1145/2804371.2804376

25



Deployment Pipeline in a
Continuous Delivery Process

Performance Change Detection

M
onitoring

D
ata

P
ersistence

S
ervice

Resource Profile
Generator

Artifact Repository

Simulator Kolmogorov-
Smirnov Test

Hardware
Environ-
ments

Resource
Profiles

Resource
Profile

Resource Profile
Comparator

Commit
Stage

Automated
Acceptance

Test

Manual
Testing Release

Developer
checks in

Notify Developer about Performance Change

Work-
loads

Figure 1: Performance Change Detection Process (adapted from [2, 5])

Figure 2: Mockup of the Web UI

change detection functionality is illustrated in figure 1.
Once the build process and the automated acceptance

tests are completed, the first process step is to generate
specifically formed performance models called resource pro-
files. A resource profile describes the performance-relevant
aspects of an EA by depicting the control flow and resource
demand of single transactions on the level of single com-
ponent operations. Users can specify the workload for a
resource profile on the level of single transactions and the
deployment topology using deployment units. The data
necessary for the generation is gathered using application
performance monitoring (APM) tools. In order to support
different monitoring technologies, the Jenkins plug-in pro-
vides a configuration to define which APM solution is used
to collect the necessary data. Out of the box, the plug-in
provides support for dynatrace2 as well as a custom moni-
toring solution. However, it can be extended to additional
APM tools.

The resulting resource profile is stored in an artifact repos-
itory [2]. The artifact repository is responsible for holding
performance model information about each of the EA’s re-
visions and is realized as EMFStore server. Besides the var-
ious resource profile versions, it also contains the hardware
environments and workloads designed for the performance
evaluation; these artifacts need to be manually created prior
to the change detection. The Simulator retrieves the gen-
erated resource profile as well as the predefined hardware

2http://www.dynatrace.com

environments and workloads and executes a simulation for
each combination. This step is repeated for all resource pro-
file versions to which the latest version should be compared.

After all simulations have finished, the resulting perfor-
mance metrics of all examined application versions are com-
pared using two-sample Kolmogorov-Smirnov tests to deter-
mine whether the samples differ significantly. If a perfor-
mance regression is found during one of the tests, the Re-
source Profile Comparator tries to find the reason for it by
analyzing the control flow of the business transactions con-
taining a regression, comparing the involved resource profiles
using EMFCompare and computing their difference. Finally,
a report is generated containing visualizations of the exam-
ined performance metrics as well as a list of the methods
that are likely to be responsible for the observed regression.
A mockup of the information available to the developer is
depicted in figure 2.

4. CONCLUSION AND FUTURE WORK
This work presented the integration of a model-based per-

formance evaluation process into an exemplary CI system.
While the basic process has been implemented and is work-
ing as described in section 3, there are still many aspects of
the prototype that can be refined and improved. One major
task is the development of a configuration interface to enable
the developer to easily manipulate the various process pa-
rameters as well as the hardware environment and workload
models.

5. REFERENCES
[1] S. Becker, H. Koziolek, and R. Reussner. The palladio

component model for model-driven performance prediction.
Journal of Systems and Software, 82(1):3–22, 2009.

[2] A. Brunnert and H. Krcmar. Detecting performance change in
enterprise application versions using resource profiles. In
Proceedings of the 8th International Conference on
Performance Evaluation Methodologies and Tools,
VALUETOOLS ’14, pages 165–172, ICST, Brussels, Belgium,
2014.

[3] A. Brunnert, C. Vögele, A. Danciu, M. Pfaff, M. Mayer, and
H. Krcmar. Performance management work. Business &
Information Systems Engineering, 6(3):177–179, 2014.

[4] A. Brunnert, K. Wischer, and H. Krcmar. Using
architecture-level performance models as resource profiles for
enterprise applications. In Proceedings of the 10th International
ACM Sigsoft Conference on Quality of Software Architectures,
QoSA ’14, pages 53–62, New York, NY, USA, 2014. ACM.

[5] J. Humble and D. Farley. Continuous Delivery: Reliable
Software Releases Through Build, Test, and Deployment
Automation. Addison-Wesley Professional, 1st edition, 2010.

26


