
Proc. Kieker/Palladio Days 2013, Nov. 27–29, Karlsruhe, Germany
Available online: http://ceur-ws.org/Vol-1083/
Copyright c© 2013 for the individual papers by the papers’ authors. Copying permitted only for
private and academic purposes. This volume is published and copyrighted by its editors.

Integrating the Palladio-Bench into the Software
Development Process of a SOA Project

Andreas Brunnert1, Alexandru Danciu1, Christian Vögele1, Daniel Tertilt1, Helmut Krcmar2

1fortiss GmbH
Guerickestr. 25, 80805 München, Germany

{brunnert, danciu, voegele, tertilt}@fortiss.org
2Technische Universität München

Boltzmannstr. 3, 85748 Garching, Germany
krcmar@in.tum.de

Abstract: This paper presents how the performance modeling capabilities of the
Palladio-Bench are integrated into the development process of new enterprise appli-
cations based on a service-oriented architecture (SOA). The Palladio-Bench is used
to predict the performance of applications early in the software development process.
To better integrate the Palladio-Bench into this process, an automated transformation
of existing software models into Palladio Component Models (PCM) is implemented.
These software models contain the business processes represented in the new applica-
tions and implementation details such as web services used within the processes. The
performance of the modeled applications is mainly influenced by the response times
of the web services. Therefore, the web service response time behavior is modeled us-
ing software performance curves, which are automatically generated using monitoring
data collected during software tests or in the production environment. Several inte-
gration tools are developed to support this feedback loop between the different phases
of a software life cycle. Besides these integration capabilities, the challenges of using
PCM within this project are discussed and future enhancements for the Palladio-Bench
itself are proposed.

1 Introduction

The overall goal of the industrial project that we describe in this paper is to transform
an existing IT landscape into a service-oriented architecture (SOA). The SOA paradigm
describes how loosely coupled software components offer services in a distributed en-
vironment. SOA enables the integration of legacy applications and aims at increasing the
flexibility of enterprises. However, one of the main concerns when implementing a SOA is
the expected performance of the overall system [OBG08, LGZ07]. Legacy systems found
in enterprises are often not designed for this type of interaction. New access patterns and
additional software layers therefore lead to different performance characteristics.

Our goal in this project context is to develop a continuous performance management pro-
cess that allows to integrate performance evaluations early into the software development
process. One of the key tools that we use for this purpose is Palladio-Bench [BKR09]. This
paper describes how we apply the Palladio-Bench within this project and our experiences

30

in terms of the effort required for its introduction in an existing software development
process.

The remainder of this paper is organized as follows: Section 2 describes the context of the
industrial project. Afterwards, Palladio-Bench use cases and enhancements are explained
in section 3. Limitations of using Palladio-Bench in the project context and proposed
feature enhancements are also outlined in the same section followed by a conclusion and
directions for future work in section 4.

2 Project Context

This section explains the project context by describing the transition of the current IT
landscape into a SOA. Afterwards, our approach to support this transition by introducing
a continuous performance management process is illustrated.

2.1 Transition to a Service-Oriented Architecture

The current IT landscape of our project partner consists of several legacy systems which
support business processes isolated from each other. Users performing business operations
interact directly with each system by using different user interfaces. This leads to a high
redundancy of data as well as to a high overhead for the users. The reason for this overhead
is that similar data needs to be managed using different systems which often leads to
inconsistencies. Thus, to better support the employees, our partner develops an integrated
user interface as single point of entry for all business processes. To support this kind of
integration on a user interface layer, the data and processes that are available in the existing
legacy applications need to be integrated into the new front-end. For this purpose, a Java
Enterprise Edition (EE)-based middleware integration layer is used in their infrastructure.
The existing functionalities of the legacy systems are provided using SOAP web services
running on Java EE servers as facades in front of the existing systems. This approach
allows to provide these services consistently from a service consumer perspective and to
abstract the technology differences of the legacy systems. The single services provided by
the legacy systems are all connected to an enterprise service bus (ESB) to avoid point-to-
point connections between service providers and consumers.

The integrated user interface is realized using several JavaServer Faces (JSF)-based web
applications that access the web services over the ESB. These applications are created in
the software development process using a model-driven development approach. Business
logic is modeled as event-driven process chains (EPC) by field specialists during the re-
quirements analysis phase. These EPC models are then transformed to Unified Modeling
Language (UML) models. At the same time, the UML models are extended with techni-
cal information such as interactions with web services in the design phase. Afterwards,
these UML models are transformed into executable components that can be run as JSF
web applications on a Java EE server.

31

Ort, 2012-08-31 Name des Vortrags © fortiss GmbH 1

Continuous Performance Management Process

Software Development Process

Performance Prediction

Requirements
Analysis Design Implementation Testing Production

Performance Analysis

Performance
Monitoring

Figure 1: Continuous performance management process

As multiple of these JSF-based web applications need to be developed to support all busi-
ness processes, several software development projects are necessary to implement the vi-
sion of an integrated user front-end. These projects need to carefully evaluate the per-
formance of each new web application, as users of these new front-ends expect similar
performance as what they are used to get from their isolated legacy systems.

2.2 Continuous Performance Management Process

The continuous performance management process that we intend to develop supports the
development as well as the production phase of new applications. As the performance
needs to be investigated early in the software life cycle, our primary project goal is to
support the performance evaluation in the software development process.

As shown in figure 1, the performance management process consists of three phases: per-
formance prediction, performance analysis and performance monitoring. Each of these
phases consists of activities which are required to ensure that given performance require-
ments can be met. The sum of these activities describe the work that a performance analyst
needs to perform in an organization.

Performance prediction includes all activities to support performance evaluations early
in the development process. During this phase, performance models are derived from
UML models created in the design phase. These performance models are parameterized
using information about the response times of external systems and the expected user
behavior. Using these models as input for a simulation engine allows to evaluate the system
performance for different workloads.

Performance analysis includes activities that can be performed once running versions of
the software applications are available. The performance characteristics of applications
are evaluated in this phase using profiling and load testing. The results of these activities
are used to optimize the architecture of the applications and to improve test designs.

The performance monitoring phase supports all activities to ensure the compliance with
defined service-level agreements (SLA) and to gather data about the response time behav-

32

ior of the web services in the SOA environment. The performance management process
is designed in a way that performance data gathered using performance measurement and
monitoring tools in the test and production phases can be used in the performance predic-
tion and analysis phases. This feedback cycle improves the accuracy of the performance
predictions early in the process as existing knowledge (i.e. response time measurements
of the SOAP web services) can be reused.

2.3 Performance Management Tool Chain

To support this continuous performance management process, an integrated performance
management tool chain (see figure 2) is being developed. This tool chain consists of
several tools (such as the Palladio-Bench) to provide an integrated support for the perfor-
mance management work. Currently, a number of these tools are already available in the
organization but they only support isolated performance management activities.

For example, several load test, profiling and monitoring tools are already in use. How-
ever, these tools are not integrated and the data gathered using such tools is not accessible
in all project phases or projects within the organization. Thus, the integration of these
tools in order to automate the performance management activities is the main focus of our
development efforts.

During the test and production phases, performance data (i.e. response times) is collected
from running applications and services. This data is aggregated in a performance database
and can therefore be used in other phases of the software life cycle to support the perfor-
mance evaluation.

Apart from making existing measurements consistently available to different users in an
organization, this data is used to parameterize performance models (see section 2.2). These
performance models conform to the Palladio Component Model (PCM) meta model and
are used within the Palladio-Bench. The remainder of this paper focuses on the specific
use cases for the Palladio-Bench within this tool chain.

3 Palladio-Bench Integration

The Palladio-Bench is used during different phases of the performance management pro-
cess. One of the main reasons for choosing the Palladio-Bench over other performance
modeling tools is the comprehensibility of the performance models. PCM models are eas-
ily comprehensible by technical staff in an organization due to the UML alignment and
the different views on the system. PCM models also allow to store performance related
information that often will not be documented otherwise (i.e. response times or resource
demands for specific service operations). The following sections describe use cases and
enhancements for the Palladio-Bench within our project context.

33

Project Context

Performance Management Tool Chain

Karlsruhe, 2013-11-28 11

• Response time prediction and analysis for web page transitions

• Call frequency prediction and analysis for web service operations

• Service-level agreement (SLA) calculation for web service operations

• Workload selection for load tests

• Lead time prediction for business processes

Performance Analysis Performance Prediction

Performance Monitoring Service Consumers Service Providers

Performance

Database

Measure

Model

Simulate

Software Performance Curves

UML to PCM Transformation

PCM Simulation Results

Figure 2: Performance management tool chain [BTVK12]

3.1 Performance Model Generation

To support the performance evaluation early in the development process, PCM models are
automatically generated based on UML models in the design phase. A business process
is represented by several UML activity diagrams that can reference each other. Thus, spe-
cific UML activity diagrams are reused by different business processes. The UML activity
diagrams are accessed in a model repository through a Java application programming in-
terface (API) to extract the required information for generating PCM models. Performance
models can be generated for a set of business processes selected by the user.

The UML activity diagrams contain usage behavior information like usage probabilities
and think times as well as the main control flow for the application logic. The usage
probabilities and think times are collected through interviews with domain experts. Thus,
realistic workload scenarios can be used for the performance evaluation of the new enter-
prise applications [Men02].

PCM specifies several model layers for different views on a system [BKR09]. Two of the
main model layers are the PCM repository and usage models. The PCM usage model spec-
ifies the workload on a system and the repository model contains the system components,
their behavior and relationships. PCM usage and repository models are generated based
on the information in the UML models. The other model layers, namely the PCM resource
environment, system and allocation models are generated based on static information. The
reason for this decision is that these models specify which hardware resources (i.e. servers
and central processing unit (CPU) cores) exist and how the repository model components
are mapped to these resources. As the available hardware resources are not changing very
often, this information is provided as configuration to the model generation code. In the
following, the generation of PCM repository models is explained in detail.

34

(a) Generated repository model example (b) Generated RDSEFF for WorkflowComponent.view 1

Figure 3: Generated PCM repository model elements

As a first step, all view-to-view transitions are extracted from the UML activity diagrams.
A view is defined as a web page presented to users of an application. For each view, all
possible successor views are extracted and the execution flows between the current view
and its successors are represented in Resource Demanding Service Effect Specifications
(RDSEFF). RDSEFFs are component behavior descriptions similar to UML activitiy dia-
grams. The generated RDSEFFs are all associated with a so called WorkflowComponent
in the PCM repository model (see view 1, view 2 and view 3 in figure 3(a)).

Each successor view is dependent on the context (business process) in which a specific
view is used. Therefore, a context parameter called process context is used in the corre-
sponding RDSEFFs to differentiate the view-to-view transition behavior for the different
business processes. This is shown in figure 3(b), the generated RDSEFF for view 1 re-
ceives a process context parameter and uses this parameter to differentiate its behavior
according to the business process in which it is used. In this example, the view is used in
process1 and process2 and behaves differently depending on the process context.

Once all view-to-view transitions are extracted from the UML activity diagrams and their
RSDSEFFs are available in a repository model, the single RDSEFFs are connected with
each other. This means, that at the end of a view transition in a RSDSEFF, another RD-
SEFF is called for the new view which then specifies the execution flows for the next pos-
sible view transitions. In the example in figure 3(b), view 1 calls the RDSEFF of view 2
when it is called in the context of business process two and the RDSEFF of view 3 if it
called in the context of business process one.

These interconnected view-to-view transitions specified in the single RDSEFFs, model the
complete execution flow of a business process. The usage behavior for different business
processes can thus be easily modeled by calling the first view of the process and specifying
the current process name in the process context parameter. This parameter is then used in
all RDSEFFs that are called within the execution flow, as it is passed on when another
view RDSEFF is called (see figure 3(b)).

35

During the transitions between the different views, calls to external web services are rep-
resented in the UML activity diagrams. Thus, each RDSEFF does not only contain views,
think times as well as the probabilities for specific execution flows but also references to
external web services (see figure 3(b)). For each web service found in the UML models, a
new PCM component interface is created in the PCM repository model (i.e. web service 1
in figure 3(a)). How the behavior of these service interfaces is represented in PCM models
is explained in the next section.

3.2 External System Representation

Once the PCM model generation based on UML activity diagrams is completed, the be-
havior of external systems is added to these models. For this purpose, SOAP web services
provided by existing legacy systems are modeled as black box components using the re-
sponse time behavior of their operations for different request counts.

To represent this response time behavior, our Palladio-Bench instances are extended with
the performance curve integration (PCI) plugin [WHW12]. The PCI plugin allows to spec-
ify the behavior of PCM repository interface operations (i.e. web service 1.operation 1 in
figure 3(a)) without modeling a RDSEFF. Instead, the response time of an operation can
be specified as a function with multiple input parameters. In our scenario, we only use
the amount of parallel users of a component as input for these functions to calculate the
response time.

In order to use performance curves within the current version of the Palladio-Bench, the
PCI plugin which is currently available for version 3.2 is adapted to version 3.4.1. In
addition to the migration of the PCI plugin we have enhanced its functionality. The orig-
inal version of the PCI plugin is only able to work with so called data tables that map
response times to input parameters, e.g. to the number of concurrent requests. In our new
version, the response time behavior can also be specified using formulas. To derive these
formulas linear and polynomial regression approaches are used to associate the number of
concurrent requests with corresponding response times observed during the performance
monitoring or test phases.

3.3 Palladio-Bench Use Cases

Using the automatically generated PCM models enhanced with usage probabilities and
software performance curves allows us to support different performance management
tasks. A set of examples can be found in figure 2.

First of all, the expected response time for page transitions in JSF web applications can
be analyzed by simulating the corresponding PCM models. Even though these models
do not contain any resource demands of the UI layer, the response time behavior of web
service operations used during page transitions allows to estimate response times for the
user. Additionally, the call frequency for specific web service operations can be analyzed

36

using the PCM models. This helps to support service providers in their sizing process as
each development project can communicate their estimated workload more precisely. The
information on page transition times and call frequencies can also be used to derive SLAs
for the maximum response times of specific web service operations.

Apart from analyzing and specifying response time requirements, the performance simula-
tions can support the selection of load test cases. The simulation results show how often a
specific usage path is performed by the end users and how many web services are involved
in this process. Both information pieces can help the test team to derive load test scripts.

Additionally, data on usage probabilities, think times and the web service response time
behavior can be used to predict the overall process lead times of specific business pro-
cesses. This information may be used to redesign business processes if potential improve-
ment areas are detected.

3.4 Limitations and Proposed Feature Enhancements

During our application of the Palladio-Bench and while implementing the enhancements
explained in the previous section, we have faced some challenges for which we would like
to suggest some future enhancement ideas.

First of all, the usage model editor should offer the possibility to reference usage models
from usage models. In practice, many usage behaviors are reused in different scenarios or
have to be factored out for complexity reduction. Currently, these usage behaviors have to
be modeled redundantly.

Another useful enhancement would be a better visual representation of nested branches
as they become very complex when large business processes are modeled. Furthermore,
a capability to stop complete execution flows on certain conditions would simplify the
modeling process. This would also reduce the model complexity as termination conditions
don’t need to be modeled multiple times.

The representation of memory within PCM models would also be very beneficial. JSF
applications require a considerable amount of Java heap memory. As the heap demand
grows with each additional user on the system, the heap size is an important factor to
estimate the required capacity for the production environment. Especially, as the garbage
collection overhead in each Java EE server instance grows with the amount of heap that
needs to be managed.

Additional feature enhancements should include an improved visualization of simulation
results. Simulation results contain large sets of data, which are hard to examine. A prepro-
cessing of simulation results to support users by using color schemes or visual indicators
for noticeable problems such as potential bottlenecks would be very helpful. A better mi-
gration support for existing models between different Palladio-Bench versions is another
desirable feature enhancement.

37

4 Conclusion and Future Work

As shown in this paper, the Palladio-Bench can greatly benefit the performance evaluation
in different phases of the software development process. The features implemented in
our part of this project help to make the Palladio tooling better applicable in practice as
creating PCM models by hand is not feasible in most industry projects.

As this project is ongoing, most of the proposed approaches are still under development
and need to be evaluated. A key challenge for future enhancements of the PCM-related
features will be to simplify the use of the performance modeling and simulation capabil-
ities. This is especially important to allow non-performance modeling experts to use the
performance management tool chain proposed in this work.

To include the resource demands in the performance evaluation of the new enterprise ap-
plications, the performance model generation capabilities introduced in [BHK11, BVK13]
might be applied in the context of this project.

References

[BHK11] Fabian Brosig, Nikolaus Huber, and Samuel Kounev. Automated Extraction of
Architecture-Level Performance Models of Distributed Component-Based Systems. In
26th IEEE/ACM International Conference On Automated Software Engineering (ASE),
pages 183–192, Lawrence, Kansas, USA, 2011.

[BKR09] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The Palladio Component Model
for Model-Driven Performance Prediction. Journal of Systems and Software, 82(1):3 –
22, 2009.

[BTVK12] Andreas Brunnert, Daniel Tertilt, Christian Vögele, and Helmut Krcmar. Applying the
Palladio Tool in a SOA Project. Palladio Days, Paderborn, Germany, 2012.

[BVK13] Andreas Brunnert, Christian Vögele, and Helmut Krcmar. Automatic Performance
Model Generation for Java Enterprise Edition (EE) Applications. In Maria Simon-
etta Balsamo, William J. Knottenbelt, and Andrea Marin, editors, Computer Perfor-
mance Engineering, volume 8168 of Lecture Notes in Computer Science, pages 74–88.
Springer Berlin Heidelberg, 2013.

[LGZ07] Yan Liu, Ian Gorton, and Liming Zhu. Performance Prediction of Service-Oriented
Applications Based on an Enterprise Service Bus. In International Computer Software
and Applications Conference (COMPSAC), pages 327–334, Beijing, China, 2007.

[Men02] Daniel Menasce. Load Testing of Web Sites. Internet Computing, IEEE, 6(4):70–74,
2002.

[OBG08] Liam O’Brien, Paul Brebner, and Jon Gray. Business Transformation to SOA: Aspects
of the Migration and Performance and QoS Issues. In International Workshop on Sys-
tems Development in SOA Environments, pages 35–40, Leipzig, Germany, 2008.

[WHW12] Alexander Wert, Jens Happe, and Dennis Westermann. Integrating Software Perfor-
mance Curves with the Palladio Component Model. In 3rd Joint WOSP/SIPEW In-
ternational Conference on Performance Engineering (ICPE), pages 283–286, Boston,
Massachusetts, USA, 2012.

38

