
Technical Report: SPEC-RG-2015-01

Performance-oriented DevOps: A Research Agenda

SPEC RG DevOps Performance Working Group

Andreas Brunnert1, André van Hoorn2, Felix Willnecker1,
Alexandru Danciu1, Wilhelm Hasselbring3,

Christoph Heger4, Nikolas Herbst5, Pooyan Jamshidi6,
Reiner Jung3, Joakim von Kistowski5, Anne Koziolek7,
Johannes Kroß1, Simon Spinner5, Christian Vögele1,

Jürgen Walter3, Alexander Wert4

1 fortiss GmbH, München, Germany
2 University of Stuttgart, Stuttgart, Germany

3 Kiel University, Kiel, Germany
4 NovaTec Consulting GmbH, Leinfelden-Echterdingen, Germany

5 University of Würzburg, Würzburg, Germany
6 Imperial College London, London, United Kingdom

7 Karlsruhe Institute of Technology, Karlsruhe, Germany

®

Contact:
Mail:

DevOps Performance
Working Group

Current Activities
•  Technical report on DevOps Performance

•  Presentation of existing methods and
techniques

•  Landscaping of performance model extraction
approaches

•  Joint publications

The RG DevOps Performance Working Group fosters and facilitates research in
combining software performance engineering (SPE) and application
performance management (APM) activities, e.g., by experience sharing,
agreement on definitions, specification of metrics, and dissemination of novel
methods, techniques, and tools for quantitative evaluation.

Mission Statement

André van Hoorn (Chair)
van.hoorn@informatik.uni-stuttgart.de

Andreas Brunnert (Vice chair)
brunnert@fortiss.org

SPEC® is a registered trademark of the
Standard Performance Evaluation Corporation (SPEC)

General Topics of Interest

Current Members (Oct. 2014)

SPE and APM Integration

Testing

D
eploym

ent

Operations

•  Interested to join? Learn more: http://research.spec.org/devopswg
•  Bi-weekly meetings via teleconference

•  The next face-to-face meeting will be held in Würzburg, Germany in February 2015

•  Performance and workload model extraction
•  Dynamic/adaptive instrumentation techniques
•  Combination of static and dynamic analysis

• 
•  Feedback between development (Dev) and

operations (Ops)
•  Interchange formats for metrics and models
•  Process models to better integrate SPE and

APM activities

•  Runtime performance management
techniques

•  Automatic problem detection, diagnosis, and
resolution

•  Load testing

•  Benchmarks for SPE and APM methods,
techniques, and tools

℠
Research

August 7, 2015 research.spec.org www.spec.org

Contents

1 Introduction . 1

2 Context . 2

2.1 Enterprise Application Performance . 2

2.2 DevOps . 3

3 Performance Management Activities . 3

3.1 Measurement-Based Performance Evaluation 4

3.2 Model-Based Performance Evaluation . 5

3.3 Performance and Workload Model Extraction 7

4 Software Performance Engineering During Development 14

4.1 Design-Time Performance Models . 15

4.2 Performance Awareness . 16

4.3 Performance Anti-Pattern Detection . 18

4.4 Performance Change Detection . 20

5 Application Performance Management During Operations 22

5.1 Performance Monitoring . 22

5.2 Problem Detection and Diagnosis . 24

5.3 Models at Runtime . 25

6 Evolution: Going Back-and-Forth between Development and Operations 27

6.1 Capacity Planning and Management . 27

6.2 Software Architecture Optimization for Performance 29

7 Conclusion . 31

8 Acronyms . 32

References . 34

i

Executive Summary

DevOps is a trend towards a tighter integration between development (Dev) and operations (Ops)
teams. The need for such an integration is driven by the requirement to continuously adapt
enterprise applications (EAs) to changes in the business environment. As of today, DevOps
concepts have been primarily introduced to ensure a constant flow of features and bug fixes into
new releases from a functional perspective. In order to integrate a non-functional perspective
into these DevOps concepts this report focuses on tools, activities, and processes to ensure one
of the most important quality attributes of a software system, namely performance.

Performance describes system properties concerning its timeliness and use of resources. Com-
mon metrics are response time, throughput, and resource utilization. Performance goals for EAs
are typically defined by setting upper and/or lower bounds for these metrics and specific busi-
ness transactions. In order to ensure that such performance goals can be met, several activities
are required during development and operation of these systems as well as during the transition
from Dev to Ops. Activities during development are typically summarized by the term Software
Performance Engineering (SPE), whereas activities during operations are called Application
Performance Management (APM). SPE and APM were historically tackled independently from
each other, but the newly emerging DevOps concepts require and enable a tighter integration
between both activity streams. This report presents existing solutions to support this integration
as well as open research challenges in this area.

The report starts by defining EAs and summarizes their characteristics that make perfor-
mance evaluations for these systems particularly challenging. It continues by describing our
understanding of DevOps and explaining the roots of this trend to set the context for the re-
maining parts of the report. Afterwards, performance management activities that are common
in both life cycle phases are explained, until the particularities of SPE and APM are discussed in
separate sections. Finally, the report concludes by outlining activities and challenges to support
the rapid iteration between Dev and Ops.

Keywords
DevOps; Software Performance Engineering; Application Performance Management.

Acknowledgements
This work has been supported by the Research Group of the Standard Performance
Evaluation Corporation (SPEC), by the German Federal Ministry of Education and Research
(André van Hoorn, grant no. 01IS15004 (diagnoseIT)), and by the European Commission
(Pooyan Jamshidi, grant no. FP7-ICT-2011-8-318484 (MODAClouds) and H2020-ICT-2014-1-
644869 (DICE)).

SPEC, the SPEC logo, and the benchmark name SPECjEnterprise are registered trademarks of
the Standard Performance Evaluation Corporation (SPEC) and the SPEC Research logo is a
service mark of SPEC. Reprint with permission. Copyright c© 1988–2015 Standard Performance
Evaluation Corporation (SPEC). All rights reserved.

ii

Section 1. Introduction

1 Introduction

DevOps has emerged in recent years to enable faster release cycles for complex Information
Technology (IT) services. DevOps is a set of principles and practices for smoothing out the
gap between development and operations in order to continuously deploy stable versions of an
application system (Hüttermann, 2012). Activities in both of these application life cycle phases
often pursue opposing goals. On the one hand, operations (Ops) teams want to keep the system
stable and favor fewer changes to the system. On the other hand, development (Dev) teams try
to build and deploy changes to an application system frequently. DevOps therefore aims at a
better integration of all activities in software development and operation of an application system
life cycle outlined in Figure 1.1. This liaison reduces dispute and fosters consensus between the
conflicting goals of DevOps.

Automation in build, deployment, and monitoring processes are key success factors for a suc-
cessful implementation of the DevOps concept. Technologies and methods used to support the
DevOps concept include infrastructure as code, automation through deep modeling of systems,
continuous deployment, and continuous integration (Kim et al., 2014).

This report focuses on performance-relevant aspects of DevOps concepts. The coordination
and execution of all activities necessary to achieve performance goals during system development
are condensed as Software Performance Engineering (SPE) (Woodside et al., 2007). Correspond-
ing activities during operations are referred to as Application Performance Management (APM)
(Menasce, 2004). Recent approaches integrate these two activities and consider performance
management as a comprehensive assignment (Brunnert et al., 2014a). A holistic performance
management supports DevOps by integrating performance-relevant information.

The report summarizes basic concepts of performance management for DevOps and use cases

Operations

Figure 1.1: Performance evaluation in the application life cycle (Standard Performance Evalua-
tion Corporation, 2015)

1

Section 2. Context

for all phases of an application life cycle. It focuses on technologies and methods in the context
of performance management that drive the integration of Dev and Ops. The report aims on
informing and educating DevOps-interested engineers, developers, architects, and managers as
well as all readers that are interested in DevOps performance management in general. In each
of the sections representative solutions are outlined. However, we do not claim that all available
are covered and are happy to hear about any solution that we have missed (find our contact
details on http://research.spec.org/devopswg)—especially, if they address some of the open
challenges covered in this report.

After introducing the context of the report in Section 2, the remaining structure is aligned
to the different phases of an application life cycle. The underlying functionalities and activi-
ties to measure and predict the performance of application systems are explained in Section 3.
Section 4 outlines performance management of DevOps activities in the development phase of
an application system. Section 5 presents performance management DevOps activities in the
operations phase. Section 6 describes how performance management can assist and improve the
evolution of application systems after the initial roll-out. The report concludes with a summary
and highlights challenges for further DevOps integration and performance management.

2 Context

This section provides information about the general context of this technical report. Section 2.1
will highlight the specific characteristics of enterprise applications from a performance perspec-
tive. Furthermore, in Section 2.2 we will outline the changes driven by the DevOps movement
that make a new view on performance management necessary.

2.1 Enterprise Application Performance

The whole technical report focuses on a specific type of software systems, namely enterprise
applications (EAs). This term is used to distinguish our perspective from other domains such as
embedded systems or work in the field of high performance computing. EAs support business
processes of corporations. This means that they may perform some tasks within a business
process automatically, but are used by end-users at some point. Therefore, they often contain
some parts that process data automatically and other parts that exhibit a user interface (UI)
and require interactions from humans. In case of EAs these humans can be employees, partners,
or customers.

According to Grinshpan (2012), performance-relevant characteristics of EAs include the fol-
lowing. EAs are vital for corporate business functions, especially the performance of such systems
is critical for the execution of business tasks. These systems need to be adapted continuously
to an ever-changing environment and need customization in order to adjust to the unique op-
erational practices of an organization. Their architecture represents server farms with users
distributed geographically in numerous offices. EAs are accessed using a variety of front-end
programs and must be able to handle pacing workload intensities.

Even though we agree with the view on the performance characteristics of EAs as outlined by
Grinshpan (2012), we left some of his points out on purpose. A main difference in our viewpoint
is that EAs may expose UIs for customers as websites in the Internet such as in e-commerce
companies like Amazon. This perspective is a bit different to the perspective of Grinshpan (2012)
as he limits the user amount of EAs to a controllable number of employees or partners. Internet-
facing websites may be used by an unpredictable number of customers. This characteristic poses
specific challenges for capacity planning and management activities.

Performance of EAs is described by the metrics response time, throughput, and resource
utilization. Therefore, performance goals are typically defined by setting upper and/or lower

2

http://research.spec.org/devopswg

Section 3. Performance Management Activities

bounds for these metrics and specific business transactions. In order to ensure that such per-
formance goals can be met, several activities are required during development and operation of
these systems as well as during the transition from Dev to Ops.

2.2 DevOps

DevOps indicates an ongoing trend towards a tighter integration between development (Dev)
and operations (Ops) teams within or across organizations (Kim et al., 2014). According to Kim
et al. (2014) the term DevOps was initially coined by Debios and Shafer in 2008 and became
widespread used after a Flickr presentation in 20091. The goal of the Dev and Ops integration is
to enable IT organizations to react more flexibly to changes in the business environment (Sharma
and Coyne, 2015). As outlined in the previous section, EAs support or enable business processes.
Therefore, any change in the business environment often leads to changing requirements for an
EA. This constant flow of changes is not well supported by release cycles of months or years.
Therefore, a key goal of the DevOps movement is to allow for a more frequent roll-out of new
features and bug fixes in a matter of minutes, hours, or days.

This change can be supported by organizational and technical means. From an organizational
perspective, the tighter integration of Dev and Ops teams can be realized by restructuring an
organization. This can, for example, be achieved by setting up mixed Dev and Ops teams
for single EAs that have end-to-end responsibility for the development and roll-out of an EA.
Another example would be to set integrated (agile) processes in place that force Dev and Ops
teams to work closer together. From a technical perspective this integration can be supported
by automating as many routine tasks as possible. These routine tasks include things such as
compiling the code, deploying new EA versions, performing regression tests, and moving an
EA version from test systems to a production environment. For such purposes, Continuous
Integration (CI) systems have been introduced and are now extended to Continuous Delivery
(CD) or Continuous Deployment (CDE) systems (Humble and Farley, 2010). The differentiation
between CI, CD, and CDE is mostly done by the amount of tasks these systems automate.
Whereas CI systems often only compile and deploy a new EA version, CD systems also automate
the testing tasks until an EA version that can be used as a release candidate. CDE describes an
extension to CD that automatically deploys a release candidate to production.

Even though the software engineering community in research and practice has already em-
braced the changes by introducing approaches for CI, CD, and CDE, a performance perspective
for these new approaches is still missing. Specifically, the challenges of the two performance
domains SPE and APM are often considered independently from each other (Brunnert et al.,
2014a). In order to support the technical and organizational changes under the DevOps umbrella
driven by the need to realize more frequent release cycles, this conventional thinking of looking
at performance activities during Dev (SPE) and during Ops (APM) independently from each
other needs to be changed. This report outlines existing technologies to support the SPE and
APM integration and outlines open challenges.

3 Performance Management Activities

Even though performance management activities have slightly different challenges during Dev
and Ops there are a lot of commonalities in the basic methods used. These common methods
are outlined in this section. Section 3.1 starts with the most fundamental performance manage-
ment activity which is the measurement-based performance evaluation. As measurement-based
performance evaluation methods always have the drawback of requiring a system to measure per-
formance metrics, model-based performance evaluation methods have been developed in order

1http://itrevolution.com/the-convergence-of-devops/

3

Section 3. Performance Management Activities

to overcome this requirement. Therefore, Section 3.2 focuses on performance modeling meth-
ods. Finally, Section 3.3 outlines existing approaches to extract performance models and open
challenges for performance model extraction techniques.

3.1 Measurement-Based Performance Evaluation

Measurement-based performance evaluation describes the activity of measuring and analyzing
performance characteristics from an executing EA. Measurement data can be obtained with
event-driven and sampling-based techniques (Lilja, 2005; Menascé and Almeida, 2002). Event-
driven techniques collect a measurement whenever a relevant event occurs in the system, e.g.,
invocation of a certain method. Sampling-based techniques collect a measurement at fixed time
intervals, e.g., every second. The tools that collect the measurements are called monitors and
are divided into hardware monitors (typically part of hardware devices, e.g., Core Processing
Unit (CPU), memory, and hard disk drive (HDD)) and software monitors.

Integrating software monitors into an application is called instrumentation. Instrumentation
techniques can be categorized into direct code modification, indirect code modification using
aspect-oriented programming, or compiler modification, or middleware interception (Jain, 1991;
Lilja, 2005; Kiczales et al., 1997; Menascé and Almeida, 2002). The instrumentation is classified
as static when the instrumentation is done at design or compile time, and as dynamic if the
instrumentation is done at runtime without restarting the system.

The instrumentation and the execution of monitors can alter the behavior of the system at
runtime. Software monitors can change the control flow by executing code that is responsible for
creating measurements. They also compete for shared resources like CPU, memory, and storage.
The impact of the instrumentation on response times and resource utilization is often called
measurement overhead. The degree of measurement overhead depends on the instrumentation
granularity (e.g., a single method, all methods of an interface, or all methods of a component),
the monitoring strategy (event-driven vs. sampling-based), instrumentation strategy (static vs.
dynamic), and also the types and quality of the employed monitors.

What information is of interest and where the information is to be obtained depends on the
performance goals and the life cycle phase of an EA. During Dev, performance metrics are usually
derived using performance, load, or stress tests on a test system, whereas measurements can be
directly taken from a production system. The specifics of these activities are outlined in the
respective sections later in this report. However, it is important to understand that performance
measurements are highly dependent on the system and the workload used to collect them.
Therefore, results measured on a one system are not directly applicable for another different
system. This is also true for different workloads. Therefore, special care needs to be taken when
selecting workloads and test systems for measurement-based performance evaluations during
Dev.

An overview on available commercial performance monitoring tools is given by Gartner in its
annual published report titled “Gartner’s magic quadrant for application performance monitor-
ing” (Kowall and Cappelli, 2014). The current market leaders are Dynatrace (Dynatrace, 2015),
AppDynamics (AppDynamics, 2015), NewRelic (New Relic, Inc., 2015), and Riverbed Technol-
ogy (Riverbed Technology, 2015). Additionally, free and open source performance monitoring
tools exist, e.g., Kieker (van Hoorn et al., 2012).

Even though a lot of monitoring tools are available, there are still a lot of challenges to
overcome when measuring software performance:

• The configuration complexity of monitoring tools is often very high and requires a lot of
expert knowledge.

• Monitoring tools lack interoperability in particular with respect to data exchange and
accessing raw data.

4

Section 3. Performance Management Activities

• Selecting an appropriate monitoring tool requires a lot of knowledge of the particular
features as some capabilities are completely missing from specific monitoring solutions.

• Measurement-based performance evaluation during development requires a representative
workload and usage profile (operational profile) to simulate users. In many cases, a repli-
cation of the productive system is not available.

• Setting up a representative test system for measurement-based performance evaluations
outside of a production environment is often associated with too much effort and cost.

• The accuracy of measurement results is highly platform-dependent, the exact same mea-
surement approach on Linux can exhibit completely different results on Windows for ex-
ample.

• Selecting appropriate time frames to keep historical data during operations is quite chal-
lenging. If the time period is too short it might happen that important data is lost too
fast, if the period is too long a monitoring solution might run into performance problems
itself due to the high amount of data it needs to manage.

3.2 Model-Based Performance Evaluation

Besides the measurement-based approach, performance behavior of a system can be evalu-
ated using model-based based approaches. So-called performance models allow for representing
performance-relevant aspects of software systems and serve as input for analytical solvers or
simulation engines. Model-based approaches enable developers to predict performance metrics.
This capability can be applied for various use cases within the life cycle of a software system,
e.g., for capacity planning or ad-hoc analyses. The procedure is depicted in Figure 3.1.

There are two forms of performance models available: analytical models and architecture-
level performance models. Common analytical models include Petri nets, Queueing Networks
(QNs), Queueing Petri Nets (QPNs), or Layered Queueing Networks (LQNs) (Balsamo et al.,
2004; Ardagna et al., 2014). Architecture-level performance models depict key performance-
influencing factors of a system’s architecture, resources, and usage (Brosig et al., 2011). The
UML Profile for Schedulability, Performance and Time (UML-SPT) (Object Management Group,
Inc., 2005), the UML Profile for Modeling and Analysis of Real-Time and Embedded Systems
(MARTE) (Object Management Group, Inc., 2011), the Palladio Component Model (PCM)
(Becker et al., 2009), and the Descartes Modeling Language (DML) (Kounev et al., 2014) are
examples for architecture-level performance models. The latter two models focus on performance
evaluation of component-based software systems and allow to evaluate the impact of different
influencing factors on software components’ performance, which are categorized by Koziolek
(2010) as follows:

• Component implementation: Several components can provide the same interface and func-
tionality, but may differ in their response time or resource usage.

• Required services: The response time of a service depends on the response time of its
required services.

• Deployment platform: Software components can be deployed on various deployment plat-
forms, which consist of different software and hardware layers.

• Usage profile: The execution time of a service can depend on the input parameter it was
invoked with.

5

Section 3. Performance Management Activities

<<Architectural Performance Model>>
Application Server

Parser

Data Access

Data Processor

Administration Database
Business

Administration

Customer

<<InternalAction>>

CPU demand = 150 ms

<<ExternalCallAction>>

Execute Query

<<InternalAction>>

CPU demand = 250 ms

<<SEFF>>
process

Response Time

Utilization

CPU HDD
λ0 λ1 λ2

<<Analytical Performance Model>>

Performance Model
Transformation

Performance
Model Solver

Performance
Model Simulator

<<Performance Prediction/Simulation Results>>

Structure of System

Behavior and Resource
Demands of Interface Operation

Figure 3.1: Model-based performance evaluation

• Resource contention: The execution time of software components depends on the waiting
time it takes to contend required resources.

Architecture-level performance models can be either simulated directly or automatically trans-
lated into analytical models and, then be processed by respective solvers. For instance, for PCM
models different simulation engines and transformations to analytical performance models such
as LQNs or stochastic regular expressions exist. Analytical solvers and simulation engines have
in common that they allow for predicting performance metrics.

Performance models can be created automatically either based on running applications
(Brunnert et al., 2013b; Brosig et al., 2009, 2011) or based on design specifications. Regarding
the latter approach, they can be derived from a variety of different design specifications such as
the Unified Modeling Language (UML) including sequence, activity, and collaboration diagrams
(Petriu and Woodside, 2002, 2003; Woodside et al., 2005; Brunnert et al., 2013a), execution
graphs (Petriu and Woodside, 2002), use case maps (Petriu and Woodside, 2002), Specification
and Description Language (SDL) (Kerber, 2001), or object-oriented specifications of systems like
class, interaction, or state transition diagrams based on object-modeling techniques (Cortellessa
and Mirandola, 2000).

Performance models and prediction of performance metrics provide the basis to analyze
various use cases, especially, to support the DevOps approach. For instance, performance mod-
els can be created for new systems during system development which intend to replace legacy
systems. Their predicted metrics can then be compared with monitoring data of the existing
systems from IT operations and, e.g., allow for examining whether the new system is expected
to require less resources. Alternatively, performance models of existing systems can be automat-
ically derived from IT operations, for example, using the approach by Brunnert et al. (2013b)

6

Section 3. Performance Management Activities

for Java Enterprise Edition (Java EE) applications. Subsequently, design alternatives can be
evaluated regarding component specifications, software configurations, or system architectures.
This enables architects and developers to optimize an existing system for different purposes like
efficiency, performance, but also costs and reliability (Aleti et al., 2013). System developers are
also able to communicate performance metrics with IT operations and ensure a certain level of
system performance across the whole system life cycle.

Furthermore, model-based performance predictions can be applied to answer sizing ques-
tions. System bottlenecks can be found in different places and, for instance, examined already
during system development. The ability to vary the workload in a model also allows to evaluate
worst-case scenarios such as the impact of an increased number of users on a system in case of
promotional actions. In this way, a system’s scalability can be examined as well by specifying
increased data volumes that have to be handled by components as it may be the case in the
future.

Regarding the DevOps approach to combine and integrate activities from software develop-
ment and IT operations, model-based performance evaluation is, for instance, useful for a) ex-
changing and comparing performance metrics during the whole system lifecycle, b) optimizing
system design and deployment for a given production environment, and c) early performance
estimation during system development.

Selected challenges for model-based performance prediction include the following:

• The representation of main memory as well as garbage collection is not explicitly integrated
and considered in performance models, yet.

• The selection of appropriate solution techniques requires a lot of expertise.

3.3 Performance and Workload Model Extraction

Performance models and workload models have to be created before we can deduce performance
metrics. This section focuses on the extraction of architectural performance models, as they
combine the capabilities of architectural models (e.g., UML) and analytical models (e.g., QN).
Analytical models explicitly or implicitly assume resource demand of service execution per re-
source. However, they do not provide a natural linking of resource demands with software
elements (e.g., components, operations) like architecture-level performance models useful for
DevOPs process automation. In traditional long-term design scenarios models may by extracted
by hand. However, manual extraction is expensive, error-prone and slow compared to automatic
solutions. Especially in contexts where Dev and Ops merge and the models frequently change,
automation is of great importance. The main goal of performance model extraction for DevOps
is to define and build an automated extraction process for architectural performance models.
Basically, architectural performance models provide a common set of features which have to be
extracted. We propose to structure the extraction into the following three extraction disciplines:

1. System structure and behavior,

2. Resource demand estimation,

3. Workload Characterization.

These extraction disciplines can be combined to a complete extraction process and are explained
in the subsequent sections. Before, we will perform a dissociation of existing model extrac-
tion approaches and outline general challenges. Some predictive models estimate service times
without linking resource demands to resources. Approaches targeting their extraction of such

7

Section 3. Performance Management Activities

black-box models using, for example, genetic optimization techniques (e.g., Westermann et al.
(2012) and Courtois and Woodside (2000)) are not considered in this report. These models serve
as interpolation of the measurements. Neither a representation of the system architecture nor its
performance-relevant factors and dependencies are extracted. Approaches to automatically con-
struct analytical performance models, such as QN, have been proposed, e.g., by Menascé et al.
(2005); Menascé et al. (2007) and Mos (2004). However, the extracted models are rather limited
since they abstract the system at a very high level without taking into account its architecture
and configuration. Moreover, for the extraction often imposes restrictive assumptions such as
a single workload class or homogeneous servers. Others, like Kounev et al. (2011), assume the
model structure to be fixed and preset (e.g., modeled by hand), and only derive model parame-
ters using runtime monitoring data. Moreover, extraction software is often limited to a certain
technology stack (e.g., Oracle WebLogic Server (Brosig et al., 2009)). We identify the following
challenges and goals for future research on model extraction:

• The assessment of validity and accuracy of extracted models is often based on a trial and
error. An improvement would be to equip models with confidence intervals.

• Model accuracy may expire if they are not updated on changes. Detection mechanisms are
required to learn when models get out of date and when to update them.

• Current performance modeling formalisms barely ensure the traceability between the run-
ning system and model instances. With reference to DevOps, more traceability information
should be stored within the models.

• The automated inspection of the System Under Analysis often requires technology-specific
solutions. One solution, to enable less technology-dependent extraction tools, might be
self-descriptive resources using standardized interfaces.

• The extraction of performance capabilities is based on a combination of software and
the (hardware) resources it is deployed at. This combined approach supports prediction
accuracy but is less qualified regarding portability of insights to other platforms. One
future research direction might be to extract separate models (e.g., separate middleware
and application models).

• Automated identification of an appropriate model granularity level.

• Automated identification and extraction of parametric dependencies in call paths and
resource demands.

3.3.1 System Structure and Behavior

The extraction of structure and behavior describes the configuration of the system. We subdi-
vide the extraction into the extraction of a) software components, b) resource landscape and
deployment, and c) inter-component interactions.

Software systems that are assembled by predefined components may be represented by the
same components in a performance model Wu and Woodside (2004). Predefined components (by
the developer) are for example: web services, EJBs in Java EE applications (e.g., in Brunnert
et al. (2013b); Brosig et al. (2009, 2011)), IComponent extensions in .NET or CORBA com-
ponents. Those extraction techniques depend on predefined components. Existing approaches
for software component extraction independent of predefined components target at source code
refactoring in a classical development process. Examples for such reverse engineering tools and
approaches are for example FOCUS (Ding and Medvidovic (2001)), ROMANTIC (Chardigny
et al. (2008); Huchard et al. (2010)), Archimetrix (von Detten (2012)) or SoMoX (Becker et al.

8

Section 3. Performance Management Activities

(2010); Krogmann (2010)). These approaches are either clustering-based, pattern-based, or com-
bine both. They all identify components as they should be according to several software metrics.
However, this does not necessarily correspond to the actual deployable structures, which is re-
quired during operation. Consequently, the identified components may be deployable in multiple
parts. The reverse engineering approaches satisfy the ’Dev’ but not the ’Ops’ part of DevOps.
An automated approach that works for DevOps independent of predefined component definitions
is still an open issue. If no predefined components are provided, component definition requires
manual effort. For manual extraction the following guidelines can be applied: i) classes that
inherit from component interfaces (e.g., IComponent or EJBComponent) represent components,
ii) all classes that inherit from a base class belong to the same component, iii) if component
A uses component B then A is a composite component including B. Component extraction has
the major challenges of technology dependency. Currently no tool that covers a wider range of
component technologies is known to the authors.

Besides software component identification one has to extract resource landscape and deploy-
ment. Automated identification of hardware and software resources in a system environment
is already available in industry. For instance, Hyperic (2014) or Zenoss (2014) provide such
functionalities. Given a list of system elements, system, network and software properties can be
extracted automatically. Further, low-level aspects, like cache topology, can be extracted using
open source tools like LIKWID (Treibig et al. (2010)). The deployment, which is the mapping
of software to resources, can be extracted using service event logs. These logs usually contain
for an executed operation (besides the execution time) identifiers that enable a mapping to the
corresponding software component and the machine it was executed at. The extraction happens
by the creation of one deployment component per couple of software component and resource
identifier found within the event logs. The logging means no additional effort as the logs are
also required for resource demand estimation. The extraction of a resource landscape in perfor-
mance modeling is mostly performed semi-automatically. We ascribe this to mainly technical
challenges, e.g., integration of information from different sources with many degrees of freedom
(network, CPU count and clock frequency, memory, middleware, operating systems).

The extraction of interactions between components differs for design time and runtime. At
design time, models can be created using designer expertise and design documents (e.g., as
performed in Smith and Williams (2002a); Menascé and Gomaa (2000); Petriu and Woodside
(2002); Cortellessa and Mirandola (2000)). Commencing at a runnable state, monitoring logs
can be generated. Automated extraction of structural information based on monitoring logs has
the advantage that it tracks the behavior of the actual product as it is evolved. An effective
architecture can be extracted which means that only executed system elements are extracted
(Israr et al. (2007)). Further, runtime monitoring data enables to extract branching probabilities
for different call paths (Brosig (2014)). Selected approaches for control flow extraction are by
Hrischuk et al. (1999); Briand et al. (2006) and Israr et al. (2007). Hrischuk et al. (1999) and
Briand et al. (2006) use monitoring information based on probes which are injected into the
beginning of each response and propagated through the system. The approach of Israr et al.
(2007) requires no probe information but is unable to model synchronization delays in parallel
sub-paths which join together. In contemporary monitoring tools like DynaTrace, AppDynamics
or Kieker the probe-based approach became standard.

We identify the following major challenges for structure and behavior extraction:

• Component extraction customization effort for case studies. Portability of technology
dependent component extraction approaches is low. Current technology-independent com-
ponent extraction approaches are considered not to be capable for a fully automated per-
formance model extraction.

9

Section 3. Performance Management Activities

• Monitoring customization effort for case studies. A complete extraction story requires
a lot of tools with different interfaces to be connected. Especially, the portability and
combination of multiple resource extraction approaches is a complex task.

3.3.2 Resource Demand Estimation

In architecture-level performance models, resource demands are a key parameter to enable their
quantitative analysis. A resource demand describes the amount of a hardware resource needed
to process one unit of work (e.g., user request, system operations, or internal actions). The gran-
ularity of resource demands depends on the abstraction level of the control flow in a performance
model. Resource demands may depend on the value of input parameters. This dependency can
be either captured by specifying the stochastic distributions of resource demands or by explicitly
modeling parametric dependencies.

The estimation of resource demands is challenging as it requires a deep integration between
application performance monitoring solutions and operating system resource usage monitors
in order to obtain resource demand values. Operating system monitors often only provide
aggregate resource usage statistics on a per-process level. However, many applications (e.g., web
and application servers) serve different types of requests with one or more processes.

Profiling tools (Graham et al., 1982; Hall, 1992) are typically used during development to
track down performance issues as well as to provide information on call paths and execution
times of individual functions. These profiling tools rely on either fine-grained code instrumenta-
tion or statistical sampling. However, these tools typically incur high measurement overheads,
severely limiting their usage during production, and leading to inaccurate or biased results. In
order to avoid distorted measurements due to overheads, Kuperberg et al. (2008, 2009) propose a
two-step approach. In the first step, dynamic program analysis is used to determine the number
and types of bytecode instructions executed by a function. In a second step, the individual byte-
code instructions are benchmarked to determine their computational overhead. However, this
approach is not applicable during operations and fails to capture interactions between individual
bytecode instructions. APM tools, such as Dynatrace (2015) or AppDynamics (2015), enable
fine-grained monitoring of the control flow of an application, including timings of individual
operations. These tools are optimized to be also applicable to production systems.

Modern operating systems provide facilities to track the consumed CPU time of individual
threads. This information is, for example, also exposed by the Java runtime environment. This
information can be exploited to measure the CPU resource consumption of processing individual
requests as demonstrated for Java by Brunnert et al. (2013b) and at the operating system level
by Barham et al. (2004). This requires application instrumentation to track which threads are
involved in the processing of a request. This can be difficult in heterogeneous environments using
different middleware systems, database systems, and application frameworks. The accuracy of
such an approach heavily depends on the accuracy of the CPU time accounting by the operating
system and the extent to which request processing can be captured through instrumentation.

Over the years, a number of approaches to estimate the resource demands using statistical
methods have been proposed. These approaches are typically based on a combination of ag-
gregate resource usage statistics (e.g., CPU utilization) and coarse-grained application statistics
(e.g., end-to-end application response times or throughput). These approaches do not depend
on a fine-grained instrumentation of the application and are therefore widely applicable to dif-
ferent types of systems and applications incurring only insignificant overheads. Different ap-
proaches from queuing theory and statistical methods have been proposed, e.g., response time
approximation (Brosig et al., 2009; Urgaonkar et al., 2007), least-squares regression (Bard and
Shatzoff, 1978; Rolia and Vetland, 1995; Pacifici et al., 2008), robust regression techniques (Cre-
monesi and Casale, 2007; Casale et al., 2008), cluster-wise regression (Cremonesi et al., 2010),
Kalman Filter (Zheng et al., 2008; Kumar et al., 2009a; Wang et al., 2012), optimization tech-

10

Section 3. Performance Management Activities

niques (Zhang et al., 2002; Liu et al., 2006; Menascé, 2008; Kumar et al., 2009b), Support Vector
Machines (Kalbasi et al., 2011), Independent Component Analysis (Sharma et al., 2008), Maxi-
mum Likelihood Estimation (Kraft et al., 2009; Wang and Casale, 2013; Pérez et al., 2015), and
Gibbs Sampling (Sutton and Jordan, 2011; Perez et al., 2013). These approaches differ in their
required input measurement data, their underlying modeling assumptions, their output metrics,
their robustness to anomalies in the input data, and their computational overhead. A detailed
analysis and comparison is provided by Spinner et al. (2015). A Library for Resource Demand
Estimation (LibReDE) offering ready-to-use implementations of several estimation approaches
is described in Spinner et al. (2014).

We identify the following areas of future research on resource demand estimation:

• Current work is mainly focused on CPU resources. More work is required to address the
specifics of other resource types, such as memory, network, or Input / Output (I/O) devices.
The challenges with these resource types are, among others, that the utilization metric is
often not as clearly defined as for CPUs, and the resource access may be asynchronous.

• Comparisons between statistical estimation techniques and measurement approaches are
missing. This would help to better understand their implications on accuracy and overhead.

• Most approaches are focused on estimating the mean resource demand. However, in order
to obtain reliable performance predictions it is also important to determine the correct
distribution of the resource demands.

• Modern system features (e.g., multi-core CPUs, dynamic frequency scaling, virtualization)
can have a significant impact on the resource demand estimation.

• Resource demand estimation techniques often require measurements for all requests during
a certain time period in which a resource utilization is measured, whereas resource demand
measurements can be applied for a selected set of transactions.

3.3.3 Workload Characterization and Workload Model Extraction

Workload characterization is a performance engineering activity that serves to a) study the way
users (including other systems) interact with the System Under Analysis (SUA) via the system-
provided interfaces and to b) create a workload model that provides an abstract representation
of the usage profile (Jain, 1991).

Menascé and Almeida (2002) suggest to decompose the system’s global workload into work-
load components (e.g., distinguishing web-based interactions from client/server transactions),
which are further divided into basic components. Basic components (e.g., representing business-
to-business transaction types or services invoked by interactive user interactions via a web-based
UI) are assigned workload intensity (e.g., arrival rates, number of user sessions over time, and
think times) and service demand (e.g., average number of documents retrieved per service re-
quest) parameters.

The remainder of this section focuses on the extraction of workload characteristics related
to navigational profiles (Section 3.3.3.1) and workload intensity (Section 3.3.3.2).

3.3.3.1 Navigational Profiles For certain kinds of systems, the assumption of workload
being an arrival of independent requests is inappropriate. A common type of enterprise applica-
tions are session-based systems. In these systems, users interact with the system in a sequence
of inter-related requests, each being submitted after an elapsed think time. The notion of a
navigational profile is used to refer to the session-internal behavior of users. The navigational

11

Section 3. Performance Management Activities

login

view
items

add to
cart

shopping
-cart

clear cart

remove

defer
order

purchase
cart

home

logout

0.67

0.11

0.120.10

0.66

0.34
0.61

0.18 0.21

login

inventory

cancel
order

sell
inventory

home

logout

0.48

0.02

0.5

0.23

0.77

login

view
items

home

logout

0.93

0.07

purchasemanagebrowse

1.0

1.0

1.0

1.0

1.0
1.0

1.0

1.0

1.0

1.0

Figure 3.2: SPECjEnterprise2010 transaction types (browse, manage, and purchase) in a CBMG
(Markov chain) representation (van Hoorn et al., 2014). For examples, in browse transactions,
users start with a login, followed by a view item request in 100% of the cases; view items is
followed by view items with a probability of 93% and by home in 7% of the cases.

profile captures the possible ways or states of a workload unit (single user/customer) through
the system. Note that we do not limit the scope of the targeted systems to web-based soft-
ware systems but to multi-user enterprise application systems in general. The same holds for
the notion of a request, which is not limited to web-based software systems. One goal of the
session-based notion is to group types of users with a similar behavior.

Metrics and Characteristics. For session-based systems, workloads characteristics can
be divided into intra-session and inter-session characteristics. Intra-session characteristics in-
clude think times between requests and the session length, e.g., in terms of the time elapsed
between the first and the last request within a session and the number of requests within a
session. Inter-session characteristics include the number of sessions per user and the number
of active sessions over time as a workload intensity metric. Moreover, request-based workload
characteristics apply, e.g., the distribution of invoked request types observed from the server
perspective.

Specification and Execution of Session-Based Workloads. Two different approaches
exist to specify session-based workloads, namely based on a) scripts and b) on performance
models.

Script-based specification is supported by essentially every load testing tool. The workflow of
a single user (class) is defined in a programming-language style—sometimes even using program-
ming languages such as Java or C++ (e.g., HP Loadrunner). These scripts, representing a single
user, are then executed by a defined number of concurrent load generator threads. Even though
the scripting languages provide basic support for probabilistic paths, the scripts are usually very
deterministic.

As opposed to this, performance models provide an abstract representation of a user session—
usually including probabilistic concepts. An often-used formalism for representing naviga-

12

Section 3. Performance Management Activities

tional profiles in session-based systems are Markov chains (Menascé et al., 1999; van Hoorn
et al., 2008; Li and Tian, 2003), i.e., probabilistic finite state machines. For example, Menascé
et al. (1999) introduce a formalism based on Markov chains, called Customer Behavior Model
Graphs (CBMGs). In a CBMG, states represent possible interactions with the SUA. Transitions
between states have associated transition probabilities and average think times. For example,
Figure 3.2 depicts CBMGs for transactions types of a (modified) workload used by the industry-
standard benchmark SPECjEnterprise2010 (van Hoorn et al., 2014). CBMGs can be used for
workload generation (Menascé, 2002). As emphasized by Krishnamurthy et al. (2006) and Shams
et al. (2006), limitations apply when using CBMGs for workload generation. For example, the
simulation of the Markov chain may lead to violations of inter-request dependencies, i.e., to
sequences of requests that do not respect the protocol of the SUA. Two items, for instance, may
be removed from a shopping cart, even though only a single item has been added before. To sup-
port inter-request dependencies (and data dependencies), Shams et al. (2006) propose a workload
modeling approach based on (non-deterministic) Extended Finite State Machines (EFSMs). An
EFSM describes valid sequences of requests within a session. As opposed to CBMGs, transitions
are not labeled with probabilities but with predicates and actions based on pre-defined state
variables. The actual workload model is the combination of valid sessions obtained by simulat-
ing an EFSM along with additional workload characteristics like session inter-arrival times, think
times, session lengths, and a workload mix modeling the relative frequency of request types. Van
Hoorn et al. (2008; 2014) combine the aforementioned modeling approaches based on CBMGs
and EFSMs. Other approaches based on analytical models employ variants of Markov chains
(Barber, 2004b), Probabilistic Timed Automata (Abbors et al., 2013) and UML State Machines
(Becker et al., 2009; Object Management Group, Inc., 2005, 2013).

Extraction. Extractions of navigational profiles are usually based on request logs obtained
from a SUA. For web-based systems, these logs (also referred to as access logs or session logs)
usually include for each request the identifier of the requested service, a session identifier (if
available), and timing information (time of request and duration). Data mining techniques,
such as clustering, are used to extract the aforementioned formal models (Menascé et al., 1999;
van Hoorn et al., 2014).

We identify the following challenges and future directions for navigational profiles as part of
workload characterization:

• Most methods so far have focused on extracting and characterizing navigational profiles
offline. Promising future work is to perform such extraction and characterization continu-
ously, e.g., to use the gathered information for near-future predictions which do not only
take the workload intensity into account.

• Navigational profiles, or workload scripts in general, outdate very fast due to changes as
part of the evolving SUA. This concerns the expected usage pattern for the application
but also protocol-level details in the interaction (service identifiers, parameters, etc.). A
future direction could be to utilize navigational profiles already during development.

3.3.3.2 Load Intensity Profiles A load intensity profile definition is a crucial element to
complete a workload characterization. The observed or estimated arrival process of transac-
tions (on the level of users, sessions or requests/jobs arrivals) needs to be specified. As basis
to specify time-dependent arrival rates or inter-arrival times, the extraction of a usage model
(see Section 3.3.3.1) should provide a classification of transaction types that are statistically
indistinguishable in terms of their resource demanding characteristics. A load intensity profile

13

Section 4. Software Performance Engineering During Development

is an instance of an arrival process. A workload that consists of several types of transactions is
then characterized by a set of load intensity profile instances.

Load intensity profiles are directly applicable in the context of any open workload scenario
with a theoretically unlimited number of users, but are not limited to those (Schroeder et al.,
2006). In a closed or partially closed workload scenario, with a limited number of active trans-
actions, the arrival process can be specified within the given upper limits and zero. Any load
intensity profile can be transformed into a time series containing arrival rates per sampling
interval.

A requirement for a load profile to appear as realistic (and not synthetic) for a given ap-
plication domain is a mixture of a) one or more (overlaying) seasonal patterns, b) long term
trends including trend breaks, c) characteristic bursts, and d) a certain degree of noise. These
components can be combined additive or multiplicative over time as visualized in Figure 3.3.

W
or

kl
oa

d
Un

its

Time

 + / × + / × + / × + / ×

 + / ×

Seasonal

Trends &
Breaks

Overlaying
Seasonal

BurstNoise

 + / ×
 + / ×

Figure 3.3: Elements of load intensity profiles (von Kistowski et al., 2014)

At early development stages, load intensity profiles can be estimated by domain experts
by defining synthetic profiles using statistical distributions or mathematical functions. At a
higher abstraction level, the Descartes Load Intensity Model (DLIM) allows to descriptively
define the seasonal, trends, burst, and noise elements in a wizard-like manner (von Kistowski
et al., 2014). DLIM is supported by a tool-chain named Load Intensity Modeling Tool (LIMBO)
(Descartes Research Group, 2015). A good starting point for a load intensity profile definition
at the development stage is to analyze the load intensity of comparable systems within the same
domain. If traces from comparable systems are available, a load profile model can be extracted
in a semi-automated manner as described by von Kistowski et al. (2015).

We identify the following open challenges in the field of load profile description and their
automatic extraction:

• Seasonal patterns may overlay (e.g., weekly and daily patterns) and change in their shape
over time. The current extraction approaches do not fully support these scenarios.

4 Software Performance Engineering During Development

This section focuses on how a combination of model-based and measurement-based techniques
can support performance evaluations during software development. First, we will focus on the

14

Section 4. Software Performance Engineering During Development

challenges of how to conduct meaningful performance analyses in stages where no implementation
exists (Section 4.1). During development, timely feedback and guidance on performance-relevant
properties of implementation decisions is extremely valuable to developers, e.g., concerning the
selection of algorithms or data structures. Support for this is provided under the umbrella of
performance awareness, presented in Section 4.2. Next, in Section 4.3, we present approaches
to detect performance problems automatically based on analyzing design models and runtime
observations. Finally, Section 4.4 focuses on the automatic detection of performance regressions,
including approaches that combine measurements and model-based performance prediction.

4.1 Design-Time Performance Models

In early software development phases like the design phase a lot of architectural, design and
technology decisions must be made that can have a significant influence on the performance
during operations (Koziolek, 2010). However, predicting the influence of design decisions on
the performance is difficult in early stages. Many questions arise for software developers and
architects during these phases. These questions include but are not limited to:

• What influence does a specific design decision have on performance?

• How scalable is the designed software architecture?

• Given the performance of reused components/systems, can the performance goals be
achieved?

In the early software development phases, performance models can be used as “early warning”
instrument to answer these questions (Woodside et al., 2007). The goal of using performance
models is to support performance-relevant architecture design decisions. Using performance
models in early development phases should also motivate software developers to engage in early
performance discussions like answering what-if questions (Thereska et al., 2010). A what-if
question describes a specific case for design or architectural decision like: ”What happens if we
use client-side rendering?” as an alternative to ”What happens if we use server-side rendering?”.

In order to create performance models, information about the system’s architecture (i.e., sce-
narios describing system behavior and deployment), workloads (see Section 3.3.3), and resource
demands (see Section 3.3.2) is needed. However, in early phases of the software development it
is challenging to create accurate performance models as the software system is not yet in pro-
duction and it is difficult to collect and identify all required empirical information. Especially,
it is difficult to get data about the workload and the resource demands of the application. In
order to face these challenges, Barber (2004a) proposes activities to gather that kind of data:

• First of all, available production data from existing versions of the software or from external
services required for the new system should be analyzed. Using this data the workload,
usage scenarios, and resource demands can be extracted.

• If no production data is available, design and requirements documents can be analyzed
regarding performance expectations for new features. Especially Service-level Agreements
(SLAs) can be used as approximation for the performance of external services until mea-
surements are available.

• The resource demands can be estimated (CPU, I/O, etc.) based on the judgments from
software developers.

• After the identification of the available information about the design, workload and re-
source demands one or more drafts of the performance model should be created and first

15

Section 4. Software Performance Engineering During Development

simulation results should be derived. The results can then be presented and discussed
with developers and architects. Then the models should be continuously improved based
on further experiments, feedbacks, results, and common sense.

The challenges of using performance models in early development phases is that it is often difficult
to validate the accuracy of the models until a running system exists. Performance predictions
based on assumptions, interviews, and pretests can also be inaccurate and subsequently also the
decisions based on these predictions. However, a model helps to capture all the collected data in
a structured form (Brunnert et al., 2013a). Considering all these aspects, the following challenges
exist for performance evaluations in early development phases that need to be addressed:

• The trust of the architects and developers in these models can be very low. It is therefore
important to make the modeling assumptions and data sources for these models transparent
to their users.

• Design models may be incomplete or inconsistent, especially in the early stages of software
development.

• Modern agile software development processes have the goal to start with the implementa-
tion as early as possible and thus may skip the design step. For such methodologies, the
approaches outlined in the following section might be better applicable.

4.2 Performance Awareness

Due to time constraints during software development, non-functional aspects with respect to
software quality—e.g., performance—are often neglected. Performance testing requires realistic
environments, access to test data, and implies the application of specific tools. Continuously
evaluating the performance of software artifacts also decreases the productivity of developers.
For quality aspects such as code cleanness or bug pattern detection, a number of automatic tools
supporting developers exist. Well-known examples are Checkstyle2 and FindBugs3. Tools that
focus on performance aspects are not yet widely spread, but would be very useful in providing
awareness on the performance of software to developers.

Performance awareness describes the availability of insights on the performance of software
systems and the ability to act upon them (Tůma, 2014). Tůma divides the term performance
awareness into four different dimensions:

1. The awareness of performance-relevant mechanisms, such as compiler optimizations, sup-
ports understanding the factors influencing performance.

2. The awareness of performance expectations aims at providing insights on how well software
is expected to perform.

3. Performance awareness also intends to support developers with insights on the performance
of software they are currently developing.

4. Performance-aware applications are intended to dynamically adapt to changing conditions.

The most relevant perspectives for DevOps are the performance awareness of developers and
the awareness of performance expectations. Gaining insights into the performance of the code
they are currently developing is an increasingly difficult task for developers. Large application
system architectures, a continuous iteration between system life cycle phases, and complex IT

2http://checkstyle.sourceforge.net
3http://findbugs.sourceforge.net

16

Section 4. Software Performance Engineering During Development

governance represent great challenges in this regard. Complex system of systems architectures
often imply a geographical, cultural, organizational, and technical variety. The structure, re-
lationships, and deployment of software components are often not transparent to developers.
Due to continuous iterations between development and operations, the performance behavior of
components is subject to constant change. The responsibility for components is also distributed
across different organizational units, increasing the difficulty to access monitoring data. Addi-
tionally, developers require knowledge in performance engineering and in using corresponding
tools. A number of approaches propose automated and integrated means to overcome these
challenges and supporting developers with performance awareness. Selected existing approaches
either provide performance measurements (Heger et al., 2013; Horky et al., 2015; Bureš et al.,
2014) or performance predictions (Weiss et al., 2013; Danciu et al., 2014) to developers. A brief
overview of these approaches is provided below.

Measurement-based approaches collect performance data during unit tests or during runtime.
Heger et al. (2013) propose an approach based on measurements collected during the execution
of unit tests that integrates performance regression root cause analysis into the development
environment. When regressions are detected, the approach supports the developer with infor-
mation on the change and the methods causing the regression. The performance evolution of
the affected method is presented graphically as a function and the methods causing the regres-
sion are displayed. Horky et al. (2015) suggest enhancements to the documentation of software
libraries with information on their performance. The performance of libraries is measured using
unit tests. Tests are executed on demand once the developer looks up a specific method for
the first time. Tests can be executed locally or on remote machines. Measurements are then
cached and refined iteratively. The approach proposed by Bureš et al. (2014) integrates per-
formance evaluation and awareness methods into different phases of the development process
of autonomic component ensembles. High-level performance goals are formulated during the
requirement phase. As soon as software artifacts become deployable, the actual performance is
measured. Developers receive feedback on the runtime performance within the Integrated De-
velopment Environment (IDE). Measurements are represented graphically as functions within a
pop-up window. At runtime it may be unclear whether the observed behavior also reflects the
expected one. Approaches for supporting the awareness of performance expectations provide
a means to formulate, communicate, and evaluate these expectations. Bulej et al. (2012) pro-
pose the usage of the Stochastic Performance Logic (SPL) to express performance assumptions
for specific methods in a hardware-independent manner. Assumptions on the performance of a
method are formulated relative to another method and are not specified in time units. At run-
time, assumptions are evaluated and potential violations can be reported to the developer. Bureš
et al. employ SPL during design to capture performance goals and assign them to individual
methods. These assumptions are then tested during runtime.

Model-based prediction approaches aim at supporting developers with insights on the per-
formance of software before it is deployed. The approach by Weiss et al. (2013) evaluates the
performance of persistence services based on tailored benchmarks during the implementation
phase. The approach enables developers to track the performance impact of changes or to com-
pare different design alternatives. Results are displayed within the IDE as numerical values and
graphically as bar charts. The approach is only applicable for Java Persistence API (JPA) ser-
vices, but instructions on how to design and apply benchmark applications to other components
are also provided by the authors. The approach proposed by Danciu et al. (2014) focuses on
the Java EE development environment. The approach supports developers with insights on the
expected response time of component operations they are currently implementing. Estimations
are performed based on the component implementation and the behavior of required services.

We identify the following open challenges and future research directions in the field of per-

17

Section 4. Software Performance Engineering During Development

formance awareness:

• Current approaches mainly focus on providing insights on performance but omit enabling
developers to act upon them. Future research should investigate how guidance for correct-
ing problems could be provided.

• Insights compiled for the specific circumstances of developers should be collected and
exchanged with Ops. Thus, new trends can be identified and corresponding measures can
be taken.

• The acceptance of performance awareness approaches by developers needs to be evaluated
more extensive and improved. Increasing the acceptance will foster the diffusion of these
approaches into industry.

• The performance improvements which can be achieved by employing performance aware-
ness approaches need to be evaluated using industry scenarios.

4.3 Performance Anti-Pattern Detection

Software design patterns (Gamma et al., 1994) provide established template-like solutions to
common design problems to be used consciously during development. By contrast, software
performance anti-patterns (Smith and Williams, 2000) constitute design, development, or de-
ployment mistakes with a potential impact on the software’s performance. Hence, anti-patterns
are primarily used as a feedback mechanism for different stakeholders of the software engineer-
ing process (e.g., software architects, developers, system operators, etc.). Hereby, approaches for
the detection of performance anti-patterns constitute the basis for anti-pattern-based feedback.
There are different approaches for performance anti-pattern detection utilizing different detec-
tion methodologies, requiring different types of artifacts and being applicable in different phases
of the software engineering process. Some of these approaches can be integrated into IDEs and
in this way support performance awareness (see Section 4.2) by providing direct feedback on
occurring performance mistakes.

4.3.1 The Essence of Performance Anti-Patterns

There is a large body of scientific and industrial literature describing different performance anti-
patterns (Smith and Williams, 2000, 2002b,c, 2003; Dudney et al., 2003; Dugan et al., 2002;
Boroday et al., 2005; Tene, 2015; Reitbauer, 2010; Grabner, 2010; Kopp, 2011; Still, 2013). All
definitions of performance anti-patterns have in common that they describe circumstances that
may lead to performance problems under certain load situations. However, the definitions of per-
formance anti-patterns conceptually differ with respect to different dimensions. While some anti-
patterns describe mistakes on the architecture level (e.g., Blob anti-pattern (Smith and Williams,
2000)), others refer to problems on the implementation level (e.g., Spin Wait anti-pattern (Boro-
day et al., 2005)) or even deployment-related problems (e.g., Unbalanced Processing (Smith
and Williams, 2002b)). Furthermore, definitions of anti-patterns differ in the level of abstrac-
tion. While some anti-patterns describe high-level symptoms of performance problems (e.g.,
The Ramp anti-pattern (Smith and Williams, 2002b)), other anti-patterns describe application-
internal indicators or even root causes (e.g., Sisyphus Database Retrieval (Dugan et al., 2002)).
Furthermore, anti-patterns may describe structural (e.g., Blob anti-pattern (Smith and Williams,
2000)) or behavioral patterns (Empty Semi Trucks anti-pattern (Smith and Williams, 2003)).
Depending on the types of anti-patterns, different detection approaches are more or less suitable
for their detection.

18

Section 4. Software Performance Engineering During Development

4.3.2 Detection Approaches

Approaches for the detection of performance anti-patterns can be divided into model-based
approaches and measurement-based approaches. Their categories of approaches imply different
circumstances under which they can be applied, yielding different limitations and benefits. In
the following, we briefly discuss the two categories of detection approaches.

Model-based Approaches Model-based approaches for the detection of performance anti-
patterns (Trubiani and Koziolek, 2011; Cortellessa and Frittella, 2007; Xu, 2012; Cortellessa
et al., 2010) require architectural (e.g., PCM or MARTE) or analytic (e.g., LQN) performance
models, as introduced in Section 3.2. Representing performance anti-patterns as rules (e.g., using
predicate logic (Trubiani and Koziolek, 2011)) allows to capture structural as well as behavioral
aspects of performance anti-patterns. While certain structural and behavioral aspects can be
evaluated directly on the architectural model, associated performance-relevant runtime aspects
can be derived by performance model analysis or simulation. Applying anti-pattern detection
rules to the models allows to identify flaws in the architectural design that may impair soft-
ware performance. Due to the abstraction level of architectural models, the detection scope of
model-based approaches is inherently limited to architecture-level anti-patterns. In particular,
performance anti-patterns that are manifested in the details of implementation cannot be de-
tected by model-based approaches. Furthermore, due to the high dependency on the models,
the detection accuracy of model-based anti-pattern detection approaches is tightly coupled to
the quality (i.e., accuracy and representativeness) of the architectural models.

Measurement-Based Approaches Depending on their stage of usage in the software life-
cycle, measurement-based approaches can be further divided into test-based and operation-time
anti-pattern detection approaches:

Test-based anti-pattern detection approaches utilize performance tests (e.g., as part of in-
tegration testing (Jorgensen and Erickson, 1994)) to gather performance measurement data as
basis for further reasoning on existing performance problems (Wert et al., 2013, 2014; Grechanik
et al., 2012). Thereby, measurement-based approaches (see Section 3.1) are applied to retrieve
performance data of interest. As monitoring tools introduce measurement overhead that may
impair the accuracy of measurement data, systematic experimentation (Westermann, 2014; Wert
et al., 2013) can be applied to deal with the trade-off between accurate measurement data and
high-level of detail of the data. Similarly to the model-based approaches, test-based detection
approaches apply analysis rules that evaluate the measurement data to identify potential perfor-
mance anti-patterns. As test-based detection approaches rely on execution of the system under
test, a testing environment is required that is representative to the actual production environ-
ment. In order to save costs, the testing environment is often considerably smaller than the
production environment. As detection of performance anti-patterns is often relative to the per-
formance requirements, in these cases, performance requirements need to be scaled down to the
size of the testing environment in order to allow reasonable, test-based detection of performance
anti-patterns. Furthermore, test-based detection approaches utilize load scripts for load genera-
tion during execution of performance tests. Hence, the detection accuracy highly depends on the
quality (i.e., representativeness of real users) of the load scripts. The DevOps paradigm is the key
enabler to derive representative load scripts for test-based anti-pattern detection from produc-
tion workloads (Section 3.3.3). Test-based approaches analyze the implemented target system
in its full level of detail. They potentially cover all types of anti-patterns: from architecture-
level via implementation-level through to structural as well as behavioral anti-patterns. Finally,
test-based approaches that run fully automatic (Wert et al., 2013, 2014) can be assimilated into
CI (Duvall et al., 2007) in order to provide frequent, regular feedback on potential existence of
performance anti-patterns in the code of the target application.

19

Section 4. Software Performance Engineering During Development

Operation-time anti-pattern detection approaches, e.g., by Parsons and Murphy (2004), are
similar to test-based approaches with respect to the detection methodology. However, as they
are applied on production system environments, they entail additional limitations as well as
benefits. In a production environment, the measurement overhead induced by monitoring tools
is a much more critical factor than with test-based approaches, as the monitoring overhead
must not noticeably affect the performance of real user requests. Therefore, operation-time anti-
pattern detection approaches apply rather coarse-grained monitoring, which affects the ability
of providing detailed insights on specific root causes of performance problems. Furthermore,
performance anti-patterns that are detected by operation-time approaches might already have
resulted in a performance problem experienced by end users. Hence, operation-time detection
of performance anti-patterns is rather reactive. However, as performance characteristics are
investigated on the real system, under real load, operation-time approaches are potentially more
accurate than model-based or test-based approaches.

We see the following research challenges in the area of performance anti-pattern detection:

• Anti-patterns are usually described in textual format. More work is needed to formalize
these descriptions into machine-processable rules and algorithms.

• Many approaches use fixed thresholds in their detection rules and algorithms, e.g., in order
to judge whether a number of remote communications is indicative for a performance
problem. This leads to context-specific and system-specific configurations. More research
is needed to automatically determine suitable thresholds or to completely avoid them.

• More research is also needed to better understand and formalize the relationship between
symptoms, indicators, and root-causes connected to performance anti-patterns and perfor-
mance problems in general.

4.4 Performance Change Detection

A key goal of a tighter integration between development and operations teams is to better cope
with changes in the business environment. In order to react quickly in such situations, a high
release frequency is necessary. This changes the typical software release process in a way that,
instead of releasing new features or bug fixes in larger batches in a few major versions, they are
released more frequently in many minor releases.

The performance characteristics of EAs can change whenever new features or bug fixes are
introduced in new versions. Due to this reason, it is necessary to continuously evaluate the
performance of EA versions to detect performance changes before an EA version is moved to
production. The previously introduced approaches during design and development cannot cap-
ture all performance-related changes. Activities during the design phase might not capture such
changes because minor bug fixes or feature additions do not change the design and are thus not
detectable. During the implementation phase, only changes are detectable that are caused by
the code of an EA directly. Therefore, changes that are only detectable on different hardware
environments (e.g., in different deployment topologies) or in specific workload scenarios must be
analyzed before an EA version is released.

In order to analyze such performance-related changes of EA deployments on different hard-
ware environments or for multiple workload scenarios, measurement- and model-based perfor-
mance evaluation techniques can be used. Measuring the performance of each EA version is
often not feasible because maintaining appropriate test environments for all possible hardware
environments and workloads is associated with a lot of cost and effort. Therefore, a mixture
of model- and measurement-based performance evaluation approaches to realize performance
change detection techniques are introduced in the following.

20

Section 4. Software Performance Engineering During Development

Deployment Pipeline in a Continuous Delivery Process

Commit
Stage

Automated
Acceptance

Test

Manual
Testing

Release

Performance
Change

Detection

Developer
checks in

Notifying Developer about
Performance Change

Automated
Capacity
Testing

Figure 4.1: Detecting performance change in a deployment pipeline (Brunnert and Krcmar,
2014)

A measurement-based technique that can be used to detect performance changes on a low
level of detail are performance unit tests (Horký et al., 2015). The key idea of such performance
unit tests is to ensure that regressions introduced by developer check-ins are quickly discovered.
One possible implementation of performance unit testing is to use existing APM solutions during
the functional unit tests. In order to make the developers aware of any performance regressions
introduced by their changes in new EA versions, an integration of such tests in CI systems is often
proposed (Waller et al., 2015). A measurement-based approach that requires test environments
that are comparable to the final production systems is proposed by Bulej et al. (2005). The
authors propose to use application-specific benchmarks to test the performance for each release.
Using such benchmarks has the advantage of repeatability and also makes the results more
robust compared to single performance tests. Another measurement-based approach to detect
performance regressions during development is proposed by Nguyen et al. (2012). The authors
propose to use so-called control charts in order to detect performance changes between two
performance tests. Similar to this approach are the works by Cherkasova et al. (2008, 2009) and
Mi et al. (2008). The authors propose the use of so-called application signatures. Application
signatures describe the response time of specific transactions relative to the resource utilization.
However, application signatures are intended to find performance changes for systems that are
already in production.

A model-based performance change detection process within a deployment pipeline, depicted
in Figure 4.1, is proposed by Brunnert and Krcmar (2014). This approach uses monitoring
data collected during automated acceptance tests in order to create models (called resource
profiles). These resource profiles describe the resource demand for each transaction of an EA
and are managed in a versioning repository in order to be able to access the resource profiles of
previous builds. The resource profile of the current EA version is used to predict performance for
predefined hardware environments and workloads. The prediction is performed with predictions
derived from resource profiles of one or several previous versions. The prediction results are
compared with each other used as an indicator for change. The resource profiles themselves and
the check-ins that triggered a build are then analyzed in order to find the source of a change
(e.g., by comparing two resource profiles).

Compared to several works that introduce approaches to detect performance change, there
is a relatively low amount of work on identifying the reasons for a performance change. One of
the few examples is the work by Sambasivan et al. (2011). The authors propose an approach
to analyze the reasons of a change based on request execution flow traces. Their approach is
based on the response time behavior of single component operations involved in the request
processing and their control flow. It might be interesting to combine this approach with the
approach presented by Brunnert and Krcmar (2014) because the resource profiles and their
prediction results provide all the necessary data for the root cause search approach presented

21

Section 5. Application Performance Management During Operations

by Sambasivan et al. (2011). This would allow to detect and analyze performance change in a
completely model-driven way.

Even though there is a lot of work going on in the area of performance change detection, a
lot of open challenges remain, such as:

• Test coverage is always limited: performance changes in areas that are not covered by a
test workload cannot be detected.

• Model-based performance change detection techniques are always associated with the risk
that aspects with impact on performance are not properly reflected in a model.

• A lot of the existing model-based performance evaluation techniques focus on CPU demand,
if memory, network, or HDD would cause a performance regression, it cannot be detected
using such models.

• Test coverage is not only limited for software itself but also in terms of the amount of
workloads and hardware environments that can be tested in a reasonable time frame.

5 Application Performance Management During Operations

Once an EA is running in a production environment it is important to continuously ensure that
it meets its performance goals. The activities required for this purpose are summarized by the
term APM. APM activities are required regardless how well SPE activities during development
outlined in the previous section have been executed. This is the case because either assumptions
about the production environment or the workload can be wrong. Furthermore, performance
data collected during operations provides a lot of insights for the development teams to get
them from assumptions to knowledge. The key APM activities during development are outlined
in this section as follows: Section 5.1 outlines one of the most fundamental activities, namely
performance monitoring. Afterwards, Section 5.2 covers performance problem detection and
diagnosis activities based on data collected using monitoring techniques. In order to reduce the
need for manual interaction, the section concludes in Section 5.3 with existing approaches and
challenges regarding the application of performance models to control the performance behavior
of an EA autonomously.

5.1 Performance Monitoring

Kowall and Cappelli (2014) use the following five dimensions of APM functionality to assess
the commercial market of APM tools in their yearly report: a) end-user experience monitoring
(EUM), b) application topology discovery and visualization, c) user-defined transaction profiling,
d) application component deep dive, and e) IT operations analytics (ITOA).

The EUM dimension stresses the need to include the monitoring of client-side performance
measures—particularly end-to-end response times—instead of looking at only those performance
measures obtained inside the server boundaries. Major reasons for this requirement are that,
nowadays, a) EAs move considerable parts of the request processing to the client, e.g., rendering
of UIs in web browsers on various types of devices; and that b) networks are increasingly influenc-
ing the user-perceived performance because EAs are accessed via different types of connections
(particularly mobile) and from locations all over the world. EUM is usually achieved by adding
instrumentation to the scripts executed on the client side and sending back the performance
measurements as part of subsequent interactions with the server.

Application topology discovery and visualization comprises the ability to automatically de-
tect and present information about the components and relationships of EA landscapes as well
as to make this information analyzable. An EA landscape consists of different types of physical

22

Section 5. Application Performance Management During Operations

or virtual servers hosting software components that interact with each other and with third-
party services via different integration technologies, including synchronous remote calls and
asynchronous message passing. Application topologies are usually discovered by monitoring
agents deployed on the application servers, which send the obtained data to a central moni-
toring database. Topologies are usually represented and visualized as navigable graph-based
representations depicting the system components and control flow. These graphs are enriched
by aggregated performance data such as calling frequencies, latencies, response times, and suc-
cess rates of transactions, as well as utilization of hardware resources. This information enables
operators to get an overall picture of a system’s health state, particularly with respect to its
performance, and to detect and diagnose performance problems.

User-defined transaction profiling refers to the functionality of mapping implementation-
level details about executed transactions (e.g., involved classes and methods, as well as their
performance properties) to their corresponding business transactions. This feature is useful in
order to assess the impact of performance properties and problems to business indicators. For
example, it can be evaluated which business functions, such as order processing, are affected in
case certain software components are slow or even unavailable.

Application component deep dive refers to the detailed tracing and presentation of call trees
for transactions. The call trees include control flow information, including executed software
methods, remote calls to third-party services, and exceptions that were thrown. The call tree
structure is enriched by performance measurements, such as response times and execution times,
as well as resource demands.

Orthogonal to the previous dimensions, ITOA functionality aims to derive higher-order in-
formation from the data gathered by the first four dimensions, e.g., by employing statistical
analysis techniques, including data mining. A typical example for ITOA is performance problem
detection and diagnosis as presented in Section 5.2.

The following list includes a summary of selected challenges regarding the current state of
performance monitoring with a focus on the APM tooling infrastructure:

• The most mature APM tools are closed-source software products provided by commercial
vendors. These tools provide comprehensive support for monitoring heterogeneous EA
landscapes, covering instrumentation support for various technologies and including novel
features such as adaptive instrumentation and automatic tuning for reduced performance
overhead. However, being closed source, the tools’ functionality often cannot be extended
or reused for other purposes in external tools. Also, details about the functionality are
generally not published. Moreover, researchers are usually not allowed to evaluate or
compare their research results with the capabilities of the tools as this is not permitted
according to the license agreements.

• The data collection functionalities of APM tools—including data about EA topologies,
transaction traces, and performance measures—are a valuable input for performance model
extraction approaches, as presented Section 3.3. However, all too often, no defined inter-
faces exist to access this data from the tools. In order to increase the interoperability of
APM platforms, open or even common interfaces are desirable. In this way, researchers can
particularly contribute to the effectiveness of APM solutions by developing novel (model-
based) ITOA approaches that build on the data collected by the mature APM tools.

• The configuration of APM tools, due to the system-specificity, is very complex, time-
consuming, and error prone—particularly given the aforementioned faster release and de-
ployment cycles requiring a continuous refinement. For example, APM-specific questions
such as what and where to monitor are decisions mainly taken by operations teams. How-
ever, performance models used during design time could be further exploited and extended

23

Section 5. Application Performance Management During Operations

to specify operations-related monitoring aspects earlier and more systematically in the sys-
tem lifecycle. An automatic configuration of APM tools is desirable, e.g., based on higher
level and tool-agnostic descriptions of monitoring goals attached to architectural perfor-
mance models.

5.2 Problem Detection and Diagnosis

Performance problem detection aims to reveal symptoms for present or upcoming system states
with degraded or suspicious performance properties, unusually high or low response times, uti-
lization of resources, or number of errors. The diagnosis step aims to reveal the root cause of
the performance problems observed by the previously detected symptom(s). These steps are
comparable to the activities during anti-pattern detection outlined in Section 4.3. However,
their main difference is that problems revealed by anti-pattern detection approaches are lim-
ited to scenarios that are known to cause problems, whereas general problem detection tries to
reveal problematic situations without prior knowledge. Approaches for problem detection and
diagnosis can be classified based on various dimensions. In this section, we focus on when the
analysis is conducted (before or after the problem occurs), who is performing it (a human or a
machine), and how it is performed (based on information about the system state or individual
transactions). Note that we are not aiming for a complete taxonomy and/or classification of
approaches but we give examples for how performance problem detection and diagnosis can be
conducted and what example approaches are.

When? Reactive approaches aim to detect and diagnose problems after they occurred,
using statistical techniques like detection of threshold violations or deviations from previously
observed baselines. Proactive approaches aim to detect and/or diagnose problems before they
occur (Salfner et al., 2010), using forecasts/predictions based on historic data for performance
measures of the same system. Forecasting and prediction techniques include mature statistical
techniques like time series forecasting, machine learning, as well as a combination of these tech-
niques with model-based performance prediction incorporating architectural knowledge about
the architecture (e.g., as in the approach by Rathfelder et al. (2012)).

Who? Problem detection is usually achieved by setting and controlling baselines on per-
formance measures of interest, both of which may be conducted manually or automatically.
Another approach is anomaly detection (Chandola et al., 2009; Marwede et al., 2009; Ehlers
et al., 2011), which aims to detect patterns in the runtime behavior that deviate from previously
observed behavior. If no automatic problem detection is in place, problems will be often reported
by end users or by system operators that inspect the current health state of the system. Manual
diagnosis of problems is usually performed by inspecting monitored data or by reproducing and
analyzing the problem in a controlled development environment, using tools like debuggers and
profilers. In any case, expert knowledge about typical relationships between symptom and root
cause can be used to guide the diagnosis strategy (e.g., based on the performance anti-patterns
presented in Section 4.3).

How? State-based problem detection and diagnosis approaches reason about aggregate
behavior of system or component measures obtained from a certain observation period, e.g.,
response time percentiles or distributions, and total invocation counts. Note that data from
individual transactions (e.g., individual response times and control flow) may be used for the
aggregation and model generation, but are dropped after the aggregation step (e.g., as in the
approach of Agarwal et al. (2004)). Transaction-based approaches (e.g., the approach of Kiciman
and Fox (2005)) are usually triggered by symptoms of performance problems observed for (a

24

Section 5. Application Performance Management During Operations

class of) transactions, e.g., high response times for a certain business transaction or error return
codes. For diagnosis, the transaction’s call tree is inspected similar to the process of profiling,
e.g., looking for methods with (exceptionally) high response times, high frequencies of method
invocations, or exceptions thrown.

The following list includes a summary of selected limitations of current approaches and
research challenges:

• Performance requirements, e.g., SLAs for response times, are often barely defined in prac-
tice. This makes the intuitive approach of comparing (current or predicted) performance
measures with thresholds or baselines infeasible. Approaches are needed to automatically
derive meaningful baselines from historic measurements. Note that a feasible trade-off
of classical classification quality attributes such as false/true positives/negatives needs to
be achieved to let administrators trust the performance problem detection and diagnosis
solution.

• Faster development and deployment cycles, in addition to potentially multiple components
deployed in different versions at the same time, impose challenges to configurations of
problem detection and diagnosis approaches.

• Basic problem detection support, often based on automatically determined baselines, is
provided by some commercial APM tools. However, for researchers, it is often hard to
judge the underlying concepts, because the tools are closed source (exceptions exist) and
the concepts are protected by patents or not published at all. In order to improve the
comparability and interoperability of tools, open APM platforms are desirable.

• Basic automatic problem detection is accepted by administrators, given that the false/true
positive/negative rates are in an acceptable range. As fully automatic problem resolution
is usually not accepted, future work in the performance community could be to focus more
on recommender systems for problem diagnosis and resolution, which can be based on
expert knowledge.

5.3 Models at Runtime

Self-adaptive or autonomic software systems use models at runtime (Salehie and Tahvildari,
2009), which continuously perform activities in a control loop, as follows: a) updating the
model with monitoring data by integrating with appropriate monitoring facilities; b) learning,
tuning, and adjusting model parameters by adopting appropriate self-learning techniques; c) em-
ploying the model to reason about adaptation, scaling, reconfiguration, repair, and other change
decisions. Several frameworks have been developed to implement runtime engines for these ac-
tivities. Recent examples include EUREMA (Vogel and Giese, 2014), iObserve (Heinrich et al.,
2014), MORISIA (Vogel et al., 2011), SLAstic (van Hoorn, 2014), and Zanshin (Tallabaci and
Silva Souza, 2013).

Both development and operations can benefit from models at runtime in the context of Dev-
Ops, as illustrated in Figure 5.1. Initially, performance-augmented models and implementation
artifacts are deployed to operations. The parameterized models at runtime are continuously
updated and become more accurate by receiving runtime monitoring data. As mentioned above,
the performance models may serve as a basis to dynamically control a system’s performance
during operation. For instance, the updated models can be used for runtime capacity manage-
ment (Section 6.1) helping the operations team to decide about the resources for the system or
providing feedback for the auto-scaling mechanism. Models at runtime can have several purposes
for operations teams. They can be exploited as the source for monitoring aspects of a running

25

Section 5. Application Performance Management During Operations

Performance
Model System

Control

MonitoringOps

Dev

Model-based
Performance
Evaluation

(Re-)Deployment

Model Extraction

IDE

Figure 5.1: Models at runtime in DevOps

system, to affect the system via model manipulation, and as a basis for analytical methods,
such as model-based verification and model-based simulation. A promising role of models at
runtime for development in the context of DevOps is to bring back the adapted model along
with the associated runtime performance information to the development environment. The
gathered information can be used to analyze and improve software system performance based on
refined design-time artifacts such as software architectural descriptions, employing the model-
based evaluation techniques summarized in this report. Using the updated models, developers
can then update the system design and the underlying code or it can be automatically updated
by appropriate techniques that causally connect the models and the system (Chauvel et al.,
2013) in order to improve system performance. Note that all major components in Figure 5.1
reside in both Dev and Ops since the system itself has both design-time and runtime aspects
and this is the same for models and the development and operational team.

Selected challenges regarding models at runtime in the context of DevOps include:

• Monitoring sensors are not precise and contain noise. As a result, the parameters of the
models that are required to be estimated by such monitoring data also get influenced by
such measurement inaccuracies. One of the relevant challenges in such context is to develop
reliable and robust estimation techniques that can update model parameters accurately
given such inaccuracies in measurements.

• Monitoring data is collected on an implementation level which might deviate from the
model level in various degrees. For example, a monitoring record may contain the sig-
nature of the invoked operation, class, and object which must then be mapped to the
corresponding component instance or type on model level. Such mapping becomes even
more complicated when non-structural properties are observed. In many approaches this
mapping is performed by a function that evaluates the signatures and maps them based
on an algorithm to a model constructed at runtime. However, in context of pre-existing
design-time models, such automatically derived runtime models may not correspond to
their design-time counterparts. Therefore, design-time models in conjunction with a map-
ping between code and model must be available at runtime to provide a correspondence of
the monitoring data to model elements.

• To be able to feedback knowledge gathered during monitoring, either the runtime model
must use a common meta-model with the design-time models or provide an accurate map-
ping between both models. In case of a common subset it is important to understand
the information flow from runtime to design-time and vice versa. For example, a changed
deployment at runtime must be reflected in the model.

26

Section 6. Evolution: Going Back-and-Forth between Development and Operations

• Runtime models, like user behavior models, are constructed out of monitoring data which
are then used to predict future user and system behavior. However, certain events, such
as a sales event for a web-shop application, cannot be predicted correctly out of observed
data. Therefore, it must be possible to feed in new user behaviors at runtime without
affecting the predicted behavior based on observed behavior.

6 Evolution: Going Back-and-Forth between Development and
Operations

After a system has been initially designed, implemented, and deployed, the evolution phase of
software development starts. As phrased by Lehman’s first law of software evolution, a system
“must be continually adapted or it becomes progressively less satisfactory in use” (Lehman and
Ramil, 2001), and thus evolution and change are inevitable for a successful software system. In
the evolution phase, development and operations can be intertwined as shown in Figure 1.1.
While the system is operated continuously, development activities after initial deployment are
triggered by specific change events. With respect to performance, two types of triggers are most
relevant:

• Changing requirements: Changed functional requirements need to be incorporated in the
software architecture, software design, and implementation. Such new or changed func-
tional requirements can newly arise in the form of new feature requests. Alternatively,
these new requirements can already be on the release plan for some time before they get
tackled in a next development iteration. In addition to functional requirements, new or
changed quality requirements can also trigger development. Examples include require-
ments for better response times as the users expectations have become higher over time
(as also discussed by Lehman and Ramil (2001)).

• Changing environment: In addition to changing requirements, also changes of the environ-
ment may create a need to update a system’s design. For performance, the most important
type of environmental change is a changing workload, both in terms of changing number
of users and in terms of changing usage profile per user. A second common type of change
concerns the execution environment, such as migration from on-premise to cloud. Such
environmental changes, if not properly addressed, can lead to either violating performance
requirements (in case of increasing workload) or inefficient operation of the system (in case
of decreasing workload). In addition to workload and execution environment, changes in
the quality properties of services that the SUA depends on can likewise cause the perfor-
mance of the SUA to change.

As a basis for performance-relevant decision making in the evolution phase, runtime information
from the system’s production environment can be exploited using model-based performance
evaluation techniques. As detailed in previous sections, this includes information about the
system structure and behavior, as well as workload characteristics. This section focuses on two
specific performance engineering activities within the evolution phase, namely capacity planning
and management (Section 6.1), as well as software architecture optimization for performance
(Section 6.2).

6.1 Capacity Planning and Management

Whenever an EA is being moved from development to operations, it is necessary to estimate
the required capacity (i.e., the amount and type of software and hardware resources) for given
workload scenarios and performance requirements. This is extremely important for completely

27

Section 6. Evolution: Going Back-and-Forth between Development and Operations

new deployments, but it is also required whenever major changes in the feature set or workload
of an application are expected. In case a new deployment needs to be planned, this activity is
usually referred to as capacity planning. As soon as a deployment exists and its capacity needs
to be adapted for changing workloads or performance requirements, this activity is referred to
as capacity management.

In order to plan capacity, it is important to not only consider performance goals but other per-
spectives such as costs. The latter includes investments in hardware infrastructure and software
licenses, as well as operations expenditures, e.g., for system maintenance and energy. According
to Menascé and Almeida (2002), capacity is considered adequately, if the performance goals
are met within given cost constraints (initial and long term cost), and if the proposed deploy-
ment topology fits within the technology standards of a corporation. Therefore, estimating the
required capacity for a deployment requires the creation of a workload model, a performance
model, and a cost model.

Nowadays, a key challenge that leads to the importance of capacity management for existing
deployments is that it is often practically not feasible to evaluate the performance of all deploy-
ments of an EA during development as shown in Section 4. Therefore, operations teams cannot
expect that all their specific scenarios have been evaluated. A challenge for new deployments
is, that not all deployments are known at the time of a release. Furthermore, there is often a
lack of information (e.g., about the resource demands of an application for specific transactions)
whenever a new deployment needs to be planned.

The traditional way of approaching capacity planning and management activities is to setup
a test environment, execute performance tests, and use the test results as input for capacity
estimations (King, 2004). As the test environments for such tests need to be comparable to the
final production deployments, this approach is associated with a lot of cost and manual labor.
Therefore, model-based performance evaluation techniques are proposed in research results in
order to reduce these upfront investment costs (Menascé and Almeida, 2002).

One example for a model-based capacity planning tool is proposed by Liu et al. (2004). This
tool can be used to support capacity planning for business process integration middleware. A
similar tool for component- and web service-based applications is proposed by Zhu et al. (2007).
However, their tool is intended to be used to derive capacity estimations from designs and
these estimations cannot be used for final capacity planning purposes. Brunnert et al. (2014b)
use resource profiles that serve as an information sharing entity between the different parties
involved in the capacity planning process. Resource profiles can be complemented with workload
and hardware environment models to derive performance predictions.

As all of the aforementioned approaches require a manual interaction to configure a model in
a way that performance, cost, and technological constrains are met, an automated optimization
is proposed by Li et al. (2010). The authors propose an automated sizing methodology for
Enterprise Resource Planning systems that takes hardware and energy costs into account. This
methodology tries to automatically find a deployment topology which provides adequate capacity
for the lowest total cost of ownership.

In addition to the previously mentioned capacity planning and management activities usually
performed offline with a longer time horizon, a lot of work is currently done in the area of self-
adaptation and runtime resource management (Kounev et al., 2011; van Hoorn, 2014). However,
it needs to be emphasized that EA architectures need to be specifically designed to handle
dynamically (de-)allocated resources during runtime. Therefore, additional research is going on
in the area of dynamically scalable (often called elastic) software architectures (Brataas et al.,
2013).

Selected challenges in the area of capacity planning and management include the following:

• Descriptions of the resource demand for EAs are still too limited in their capabilities (e.g.,
the amount of resource types they cover).

28

Section 6. Evolution: Going Back-and-Forth between Development and Operations

• New system architectures such as big data systems require a refocus on storage performance
and algorithmic complexity.

• Energy consumption should be considered as part of a capacity planning activity, as it is
a major cost driver in data centers nowadays (Poess and Nambiar, 2008).

• The use of existing capacity planning and management approaches needs to be simplified
to avoid the need to have highly-skilled performance engineers on board at the time of
planning a deployment as this is often necessary in a sales process without a project team
(Grinshpan, 2012).

6.2 Software Architecture Optimization for Performance

Whenever a change triggered a (re)design phase, there is also an opportunity to question the
current architecture model and find potential for improvement. Architecture-based performance
prediction is not limited to design decisions that are directly affected by incoming changes. Addi-
tionally, other design decisions taken can be reconsidered in the light of the changed requirements
and/or changed environment. As a key aspect of the overall DevOps culture is automation, the
remainder of this section will discuss existing tools that can help to automatically achieve such
improvements.

A number of approaches that automatically derive performance-optimized software architec-
tures have been surveyed by Aleti et al. (2013). Up to 2011, the authors found 51 approaches
that aim to optimize some performance property. These approaches usually focus on specific
types of changes. For example, 37 of the approaches studied allocation of components, 6 ap-
proaches address component selection, and 20 approaches address service selection. Overall,
the explored changes were allocation, hardware replication, hardware selection, software replica-
tion, scheduling, component selection, service selection, software selection, service composition,
software parameters, clustering, hardware parameters, architectural pattern, partitioning, or
maintenance schedules. Some approaches also considered problem-specific additional changes
and 5 approaches were general, i.e., they supported the modeling of any type of change.

In addition to optimizing performance, most of the approaches also take potentially conflict-
ing additional objectives into account. Most commonly, costs of the solution are considered as
well (38 approaches), followed by reliability (25), availability (18), and energy (6).

Performance models extracted from production systems as outlined in Section 5.3 can be used
as a basis to optimize performance. For formulating an optimization problem on an architectural
performance model, it is required to specify an objective function and a list of possible changes
to be explored by the optimization algorithm.

Objective Function The associated solvers of the performance model already provide possible
evaluation functions. Such an evaluation function takes an architectural performance model as
an input and determines performance metrics, e.g., the mean response time, as an output.
Selecting a performance metric of interest, such as mean response time, we can easily define an
objective function for an optimization problem. Let M denote the set of all valid architectural
performance models for a given architecture metamodel (e.g., all valid instances of the Palladio
Component Model). Let fp : M → R denote the evaluation function that determines the selected
performance metric p for a given model m ∈M . Then, fp can serve as an objective function to
optimize architecture models. In case of mean response time mrt, we aim to minimize fmrt.

Possible Changes In addition to defining what the objective function is, the other major
component of the optimization is defining what can be changed. When optimizing architectural
models for performance, we usually want to keep the functionality of the system unchanged.

29

Section 6. Evolution: Going Back-and-Forth between Development and Operations

Thus, we do not want to arbitrarily change the model, but only explore functionally-equivalent
models with varying performance properties. For example, in component-based architectures,
the deployment of components to servers can change without changing the functionality of the
system. Likewise, assigning a cache component or replacing middleware components should not
change functionality.

There are different approaches on how to encode possible changes. One is to enumerate the
set of open design decisions (Koziolek, 2013). For example, a decision could be on which server
to allocate a component. Another example for an open decision could be whether to add a
cache and where. Each open decision has a set of possible alternative options. For example, the
possible options for the first design decision could be that a component can be allocated to a set
of servers. As another example, the possible options for the second open design decision could
be that the cache can be placed in front of a set of components or nowhere.

Then, a single architectural candidate can be characterized by which option has been chosen
for each open decision. One can picture this as a multidimensional decision space where each
open decision is a dimension and each possible architectural candidate is a point in this space. In
addition, it may be required to specify additional constraints on the decision space, such as that
component A and component B may not be allocated to the same machine, e.g., due to security
concerns. Thus, some of the architectural candidates in the decision space may be invalid.

Optimization Problem Then, combined, we can define an optimization problem. A single-
objective optimization could be to minimize the objective function fp for the chosen performance
metric of interest p over the valid architectural candidates in the decision space. If multiple ob-
jective functions are of interest, one can also formulate a multi-objective problem with several
objective functions fp1 , ..., fpn and search for the so-called Pareto-optimal solutions (Deb, 2005).
A solution is Pareto-optimal, if one cannot find another solution that is better or at least equal
with respect to all objective functions.

Even though a lot of approaches exist to automatically improve a software architecture for
performance and it is known how to specify a general optimization problem based on performance
models, a few major challenges remain:

• All the approaches that use performance models as input for a software architecture op-
timization rely on the accuracy of the information represented in the model. Whenever a
certain aspect of a software system is not represented, it cannot be optimized. It thus may
be necessary to derive different model granularities for runtime optimization of systems
and general architecture optimization.

• Even though automatic performance model generation approaches exist, the specification
of the possible changes to these models remains a manual step. It remains to be seen how
the specification of these possibilities can be designed to make it simple for the users and
thus increase the adoption rate.

• Most software architecture optimization approaches surveyed by Aleti et al. (2013) are
limited in that they either focus on specific possible changes only, that they only support
simple performance prediction (e.g., very simple queuing models), or that they consider
no or few conflicting objectives. Thus, a general optimization framework for software
architectures could be devised, which could make use of a) plug-ins that interpret different
architecture models (from architecture description languages to component models) and
provide degree of freedom definitions and b) plug-ins to evaluate quality attributes for a
given architecture model.

30

Section 7. Conclusion

7 Conclusion

This report outlined activities assisting the performance-oriented DevOps integration with the
help of measurement- and model-based performance evaluation techniques. The report explained
performance management activities in the whole life cycle of a software system and presented
corresponding tools and studies. Following a general section about existing measurement- and
model-based performance evaluation techniques, the report focused on specific activities in the
development and operation phase. Afterwards, it outlined activities during the evaluation phase
when a system is going back-and-forth between development and operation.

A key success factor for all the integrated activities outlined in this report is the interop-
erability between the different tools and techniques. For example, an architect might create a
deployment architecture of a software system, conduct several studies, then move the model to
a tool better suited to performance analysis. For models, approaches such as the Performance
Model Interchange Format (PMIF) (Smith et al., 2010) exist to help in this process. When
someone from operations might want to communicate metrics to someone from development,
it is necessary to be able to exchange the metrics in a common format. For this use case, for-
mats such as the Common Information Model (CIM) Metrics Model (Distributed Management
Task Force (DMTF), Inc., 2003), the Structure Metrics Meta-Model (SMM) (Object Manage-
ment Group, Inc., 2012) or the performance monitoring specification of the Open Services for
Lifecycle Collaboration (2014) exist. However, even though approaches exist, they need to be
supported by multiple vendors in order for them to work. It is still to be seen which of these
approaches and specifications might establish themselves as an industry standard.

As of today the outlined approaches exist in theory and practice, but most model-based
approaches are developed in academia and not in industry context. Furthermore, most develop-
ment and operations activities are not tightly integrated as of today. Integrating the proposed
approaches and increasing the degree of automation are key challenges for applying performance
models in industry context and supporting Dev and Ops in terms of performance improvements.
Several approaches focus on specific systems and need to be generalized for broader usage scenar-
ios. Further validation on large industry projects would increase the level of trust and readiness
to assume the costs and risks of applying performance models. Both, industry and academia
have to address these challenges to enable a fully performance-oriented DevOps integration.

31

Section 8. Acronyms

8 Acronyms

APM Application Performance Management

API Application Program Interface

CBMG Customer Behavior Model Graph

CD Continuous Delivery

CDE Continuous Deployment

CI Continuous Integration

CIM Common Information Model

CPU Core Processing Unit

CSM Core Scenario Model

Dev development

DLIM Descartes Load Intensity Model

DML Descartes Modeling Language

EA enterprise application

EFSM Extended Finite State Machine

EJB Enterprise Java Bean

EUM end-user experience monitoring

HDD hard disk drive

Java EE Java Enterprise Edition

JPA Java Persistence API

IDE Integrated Development Environment

I/O Input / Output

IT Information Technology

ITOA IT operations analytics

LibReDE Library for Resource Demand Estimation

LIMBO Load Intensity Modeling Tool

LQN Layered Queueing Network

MARTE UML Profile for Modeling and Analysis of Real-Time and Embedded Systems

PCM Palladio Component Model

PMIF Performance Model Interchange Format

QN Queueing Network

32

Section 8. Acronyms

QPN Queueing Petri Net

OSLC Open Services for Lifecycle Collaboration

Ops operations

SDL Specification and Description Language

SLA Service-level Agreement

SMM Structure Metrics Meta-Model

SPE Software Performance Engineering

SPL Stochastic Performance Logic

SUA System Under Analysis

UI user interface

UML Unified Modeling Language

UML-SPT UML Profile for Schedulability, Performance and Time

33

References

[Abbors et al. 2013] F. Abbors, T. Ahmad, D. Truscan, and I. Porres. Model-based performance
testing in the cloud using the mbpet tool. In Proceedings of the 4th ACM/SPEC International
Conference on Performance Engineering (ICPE ’13), pages 423–424. ACM, 2013.

[Agarwal et al. 2004] M. K. Agarwal, K. Appleby, M. Gupta, G. Kar, A. Neogi, and A. Sailer.
Problem determination using dependency graphs and run-time behavior models. In 15th
IFIP/IEEE International Workshop on Distributed Systems: Operations and Management
(DSOM 2004), volume 3278 of LNCS, pages 171–182, 2004.

[Aleti et al. 2013] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya. Software
architecture optimization methods: A systematic literature review. IEEE Transactions of
Software Engineering, 39(5):658–683, 2013.

[AppDynamics 2015] AppDynamics. AppDynamics. https://www.appdynamics.com, 2015.

[Ardagna et al. 2014] D. Ardagna, G. Casale, M. Ciavotta, J. F. Pérez, and W. Wang. Quality-
of-service in cloud computing: modeling techniques and their applications. Journal of Internet
Services and Applications, 5(1):11, 2014.

[Balsamo et al. 2004] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni. Model-based
performance prediction in software development: A survey. IEEE Transactions of Software
Engineering, 30(5):295–310, 2004.

[Barber 2004a] S. Barber. Creating effective load models for performance testing with incom-
plete empirical data. In Proceedings of the 6th IEEE International Workshop on Web Site
Evolution (WSE ’04), pages 51–59. IEEE Computer Society, 2004a.

[Barber 2004b] S. Barber. User Community Modeling Language (UCML) v1.1 for performance
test workloads. http://www.perftestplus.com/ARTICLEs/ucml.pdf, 2004b.

[Bard and Shatzoff 1978] Y. Bard and M. Shatzoff. Statistical methods in computer performance
analysis. Current Trends in Programming Methodology, III, 1978.

[Barham et al. 2004] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using Magpie for
request extraction and workload modelling. In Proceedings of the 6th Symposium on Operating
Systems Design & Implementation (OSDI’04), pages 18–18. USENIX Association, 2004.

[Becker et al. 2009] S. Becker, H. Koziolek, and R. Reussner. The Palladio Component Model
for model-driven performance prediction. Journal of Systems and Software, 82(1):3–22, 2009.

[Becker et al. 2010] S. Becker, M. Hauck, M. Trifu, K. Krogmann, and J. Kofron. Reverse
engineering component models for quality predictions. In Proceedings of the 14th European
Conference on Software Maintenance and Reengineering (CSMR ’10), pages 199–202. IEEE,
2010.

34

https://www.appdynamics.com
http://www.perftestplus.com/ARTICLEs/ucml.pdf

Section References

[Boroday et al. 2005] S. Boroday, A. Petrenko, J. Singh, and H. Hallal. Dynamic analysis of
Java applications for multithreaded antipatterns. SIGSOFT Software Engineering Notes, 30
(4):1–7, 2005.

[Brataas et al. 2013] G. Brataas, E. Stav, S. Lehrig, S. Becker, G. Kopčak, and D. Huljenic.
CloudScale: Scalability management for cloud systems. In Proceedings of the 4th ACM/SPEC
International Conference on Performance Engineering (ICPE ’13), pages 335–338. ACM,
2013.

[Briand et al. 2006] L. C. Briand, Y. Labiche, and J. Leduc. Toward the reverse engineering
of UML sequence diagrams for distributed Java software. IEEE Transactions of Software
Engineering, 32(9):642–663, 2006.

[Brosig 2014] F. Brosig. Architecture-Level Software Performance Models for Online Perfor-
mance Prediction. PhD thesis, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany,
2014.

[Brosig et al. 2009] F. Brosig, S. Kounev, and K. Krogmann. Automated extraction of Palladio
component models from running enterprise Java applications. In Proceedings of the 1st Inter-
national Workshop on Run-time mOdels for Self-managing Systems and Applications (ROSSA
2009). ACM, 2009.

[Brosig et al. 2011] F. Brosig, N. Huber, and S. Kounev. Automated extraction of architecture-
level performance models of distributed component-based systems. In Proceedings of the 26th
IEEE/ACM International Conference On Automated Software Engineering (ASE 2011), 2011.

[Brunnert and Krcmar 2014] A. Brunnert and H. Krcmar. Detecting performance change in
enterprise application versions using resource profiles. In Proceedings of the 8th International
Conference on Performance Evaluation Methodologies and Tools (ValueTools ’14), 2014.

[Brunnert et al. 2013a] A. Brunnert, A. Danciu, C. Vögele, D. Tertilt, and H. Krcmar. Integrat-
ing the Palladio-bench into the software development process of a SOA project. In Symposium
on Software Performance: Joint Kieker/Palladio Days 2013, pages 30–38, 2013a.

[Brunnert et al. 2013b] A. Brunnert, C. Vögele, and H. Krcmar. Automatic performance
model generation for Java Enterprise Edition (EE) applications. In Proceedings of the 10th
European Performance Engineering Workshop (EPEW ’13), volume 8168 of LNCS, pages
74–88. Springer-Verlag, 2013b.

[Brunnert et al. 2014a] A. Brunnert, C. Vögele, A. Danciu, M. Pfaff, M. Mayer, and H. Krcmar.
Performance management work. Business & Information Systems Engineering, 6(3):177–179,
2014a.

[Brunnert et al. 2014b] A. Brunnert, K. Wischer, and H. Krcmar. Using architecture-level
performance models as resource profiles for enterprise applications. In Proceedings of the
10th International ACM SigSoft Conference on Quality of Software Architectures (QoSA ’14),
pages 53–62. ACM, 2014b.

[Bulej et al. 2005] L. Bulej, T. Kalibera, and P. Tůma. Repeated results analysis for middleware
regression benchmarking. Performance Evaluation, 60(1-4):345–358, 2005.

[Bulej et al. 2012] L. Bulej, T. Bureš, J. Keznikl, A. Koubková, A. Podzimek, and P. Tůma.
Capturing performance assumptions using stochastic performance logic. In Proceedings of the
3rd ACM/SPEC International Conference on Performance Engineering (ICPE ’12), pages
311–322. ACM, 2012.

35

Section References

[Bureš et al. 2014] T. Bureš, V. Horký, M. Kit, L. Marek, and P. Tůma. Towards performance-
aware engineering of autonomic component ensembles. In Leveraging Applications of Formal
Methods, Verification and Validation, LNCS, pages 131–146. Springer-Verlag, 2014.

[Casale et al. 2008] G. Casale, P. Cremonesi, and R. Turrin. Robust workload estimation in
queueing network performance models. In Proceedings of the 16th Euromicro Conference on
Parallel, Distributed and Network-Based Processing (PDP 2008), pages 183–187, 2008.

[Chandola et al. 2009] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Comput. Surv., 41(3):1–58, 2009.

[Chardigny et al. 2008] S. Chardigny, A. Seriai, D. Tamzalit, and M. Oussalah. Extraction of
component-based architecture from object-oriented systems. In Proceedings of the 7th Working
IEEE/IFIP Conference on Software Architecture (WICSA 2008), pages 285–288, 2008.

[Chauvel et al. 2013] F. Chauvel, N. Ferry, and B. Morin. Models@ runtime to support the
iterative and continuous design of autonomic reasoners. Proceedings of the 8th International
Workshop on MoDELS@Run.time (MoDELS@Run.time 2013), 2013.

[Cherkasova et al. 2008] L. Cherkasova, K. M. Ozonat, N. Mi, J. Symons, and E. Smirni.
Anomaly? Application change? Or workload change? Towards automated detection of ap-
plication performance anomaly and change. In Proceedings of the 38th IEEE International
Conference on Systems and Networks (DSN ’08), pages 452–461, 2008.

[Cherkasova et al. 2009] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni. Automated
anomaly detection and performance modeling of enterprise applications. ACM Transactions
on Computer Systems, 27(3):6:1–6:32, 2009.

[Cortellessa and Frittella 2007] V. Cortellessa and L. Frittella. A framework for automated
generation of architectural feedback from software performance analysis. In Formal Methods
and Stochastic Models for Performance Evaluation, volume 4748 of LNCS, pages 171–185.
Springer-Verlag, 2007.

[Cortellessa and Mirandola 2000] V. Cortellessa and R. Mirandola. Deriving a queueing net-
work based performance model from UML diagrams. In Proceedings of the 2nd International
Workshop on Software and Performance (WOSP ’00), pages 58–70. ACM, 2000.

[Cortellessa et al. 2010] V. Cortellessa, A. Martens, R. Reussner, and C. Trubiani. A process to
effectively identify “guilty” performance antipatterns. In Fundamental Approaches to Software
Engineering, volume 6013 of LNCS, pages 368–382. Springer-Verlag, 2010.

[Courtois and Woodside 2000] M. Courtois and M. Woodside. Using regression splines for
software performance analysis. In Proceedings of the 2nd International Workshop on Software
and Performance (WOSP ’00), pages 105–114. ACM, 2000.

[Cremonesi and Casale 2007] P. Cremonesi and G. Casale. How to select significant workloads
in performance models. In Proceedings of the CMG Conference (CMG 2007), 2007.

[Cremonesi et al. 2010] P. Cremonesi, K. Dhyani, and A. Sansottera. Service time estimation
with a refinement enhanced hybrid clustering algorithm. In Analytical and Stochastic Modeling
Techniques and Applications, volume 6148 of LNCS, pages 291–305. Springer-Verlag, 2010.

[Danciu et al. 2014] A. Danciu, A. Brunnert, and H. Krcmar. Towards performance awareness
in Java EE development environments. In Proceedings of Symposium on Software Performance
2014 (SOSP’14), pages 152–159, 2014.

36

Section References

[Deb 2005] K. Deb. Multi-Objective Optimization. In Search Methodologies. Introductory
Tutorials in Optimization and Decision Support Techniques, pages 273–316. Springer-Verlag,
2005.

[Descartes Research Group 2015] Descartes Research Group. LIMBO: Load Intensity Modeling
Framework. http://descartes.tools/limbo, 2015.

[Ding and Medvidovic 2001] L. Ding and N. Medvidovic. Focus: A light-weight, incremental
approach to software architecture recovery and evolution. In Proceedings of the Working
IEEE/IFIP Conference on Software Architecture (WICSA ’01), pages 191–200. IEEE, 2001.

[Distributed Management Task Force (DMTF), Inc. 2003] Distributed Management Task Force
(DMTF), Inc. Common Information Model (CIM) Metrics Model. http://www.dmtf.org/

sites/default/files/standards/documents/DSP0141.pdf, 2003.

[Dudney et al. 2003] B. Dudney, S. Asbury, J. K. Krozak, and K. Wittkopf. J2EE antipatterns.
John Wiley & Sons, 2003.

[Dugan et al. 2002] R. F. Dugan, Jr., E. P. Glinert, and A. Shokoufandeh. The Sisyphus
database retrieval software performance antipattern. In Proceedings of the 3rd International
Workshop on Software and Performance (WOSP ’02), pages 10–16. ACM, 2002.

[Duvall et al. 2007] P. M. Duvall, S. Matyas, and A. Glover. Continuous Integration: Improving
Software Quality and Reducing Risk. Addison-Wesley Signature Series. Pearson Education,
2007.

[Dynatrace 2015] Dynatrace. Dynatrace. http://www.dynatrace.com, 2015.

[Ehlers et al. 2011] J. Ehlers, A. van Hoorn, J. Waller, and W. Hasselbring. Self-adaptive
software system monitoring for performance anomaly localization. In Proceedings of the 8th
IEEE/ACM International Conference on Autonomic Computing (ICAC 2011), pages 197–200.
ACM, June 2011.

[Gamma et al. 1994] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:
Elements of reusable object-oriented software. Pearson Education, 1994.

[Grabner 2010] A. Grabner. Top 10 performance problems taken from Zappos, Mon-
ster, Thomson and Co, 2010. URL http://apmblog.compuware.com/2010/06/15/

top-10-performance-problems-taken-from-zappos-monster-and-co/.

[Graham et al. 1982] S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A call graph
execution profiler. SIGPLAN Not., 17(6):120–126, 1982.

[Grechanik et al. 2012] M. Grechanik, C. Fu, and Q. Xie. Automatically finding performance
problems with feedback-directed learning software testing. In Proceedings of the 34th Inter-
national Conference on Software Engineering (ICSE 2012), pages 156–166, 2012.

[Grinshpan 2012] L. Grinshpan. Solving Enterprise Applications Performance Puzzles: Queuing
Models to the Rescue. Wiley-IEEE Press, 1st edition, 2012.

[Hall 1992] R. J. Hall. Call path profiling. In Proceedings of the 14th International Conference
on Software Engineering (ICSE ’92), pages 296–306. ACM, 1992.

[Heger et al. 2013] C. Heger, J. Happe, and R. Farahbod. Automated root cause isolation of
performance regressions during software development. In Proceedings of the 4th ACM/SPEC
International Conference on Performance Engineering (ICPE ’13), pages 27–38. ACM, 2013.

37

http://descartes.tools/limbo
http://www.dmtf.org/sites/default/files/standards/documents/DSP0141.pdf
http://www.dmtf.org/sites/default/files/standards/documents/DSP0141.pdf
http://www.dynatrace.com
http://apmblog.compuware.com/2010/06/15/top-10-performance-problems-taken-from-zappos-monster-and-co/
http://apmblog.compuware.com/2010/06/15/top-10-performance-problems-taken-from-zappos-monster-and-co/

Section References

[Heinrich et al. 2014] R. Heinrich, E. Schmieders, R. Jung, K. Rostami, A. Metzger, W. Has-
selbring, R. Reussner, and K. Pohl. Integrating run-time observations and design component
models for cloud system analysis. In Proceedings of the 9th Workshop on Models@run.time,
volume 1270, pages 41–46. CEUR, Sept. 2014.

[Horký et al. 2015] V. Horký, P. Libic, L. Marek, A. Steinhauser, and P. Tůma. Utilizing per-
formance unit tests to increase performance awareness. In Proceedings of the 6th International
Conference on Performance Engineering (ICPE ’15), pages 289–300. ACM, 2015.

[Horky et al. 2015] V. Horky, P. Libic, A. Steinhauser, and P. Tuma. Dos and don’ts of conduct-
ing performance measurements in Java. In Proceedings of the 6th International Conference on
Performance Engineering (ICPE 2015), pages 337–340, 2015.

[Hrischuk et al. 1999] C. E. Hrischuk, C. M. Woodside, J. A. Rolia, and R. Iversen. Trace-
based load characterization for generating performance software models. IEEE Transactions
of Software Engineering, 25(1):122–135, Jan. 1999.

[Huchard et al. 2010] M. Huchard, A. D. Seriai, and A.-E. El Hamdouni. Component-based
architecture recovery from object-oriented systems via relational concept analysis. In Proceed-
ings of the 7th International Conference on Concept Lattices and Their Applications (CLA
2010), pages 259–270, 2010.

[Humble and Farley 2010] J. Humble and D. Farley. Continuous Delivery: Reliable Software
Releases Through Build, Test, and Deployment Automation. Addison-Wesley Professional, 1st
edition, 2010.

[Hüttermann 2012] M. Hüttermann. DevOps for Developers. Apress, 2012.

[Hyperic 2014] Hyperic. Hyperic (2014). http://www.hyperic.com, 2014.

[Israr et al. 2007] T. Israr, M. Woodside, and G. Franks. Interaction tree algorithms to extract
effective architecture and layered performance models from traces. Journal of Systems and
Software, 80(4):474–492, 2007.

[Jain 1991] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons,
1991.

[Jorgensen and Erickson 1994] P. C. Jorgensen and C. Erickson. Object-oriented integration
testing. Commun. ACM, 37(9):30–38, 1994.

[Kalbasi et al. 2011] A. Kalbasi, D. Krishnamurthy, J. Rolia, and M. Richter. MODE: Mix driven
on-line resource demand estimation. In Proceedings of the 7th International Conference on
Network and Services Management, pages 1–9, 2011.

[Kerber 2001] L. Kerber. Scenario-based performance evaluation of SDL/MSC-specified sys-
tems. In Performance Engineering, volume 2047 of LNCS, pages 185–201. Springer-Verlag,
2001.

[Kiciman and Fox 2005] E. Kiciman and A. Fox. Detecting application-level failures in
component-based internet services. IEEE Transactions on Neural Networks, 16(5):1027–1041,
2005.

[Kiczales et al. 1997] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In Proceedings of the 11th European
Conference on Object-Oriented Programming (ECOOP ’97), volume 1241 of LNCS, pages
220–242. Springer-Verlag, 1997.

38

Section References

[Kim et al. 2014] G. Kim, K. Behr, and G. Spafford. The Phoenix Project: A Novel about IT,
DevOps, and Helping Your Business Win. It Revolution Press, 2014.

[King 2004] B. King. Performance Assurance for IT Systems. Taylor & Francis, 2004.

[Kopp 2011] M. Kopp. The top Java memory problems, 2011. URL http://apmblog.

compuware.com/2011/12/15/the-top-java-memory-problems-part-2.

[Kounev et al. 2011] S. Kounev, K. Bender, F. Brosig, N. Huber, and R. Okamoto. Automated
simulation-based capacity planning for enterprise data fabrics. In Proceedings of the 4th In-
ternational ICST Conference on Simulation Tools and Techniques (SIMUTools ’11), pages
27–36. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2011.

[Kounev et al. 2014] S. Kounev, F. Brosig, and N. Huber. The Descartes Modeling Language.
Technical report, Department of Computer Science, University of Wuerzburg, 2014. URL
http://www.descartes-research.net/dml/.

[Kowall and Cappelli 2014] J. Kowall and W. Cappelli. Gartner’s magic quadrant for application
performance monitoring, 2014.

[Koziolek 2013] A. Koziolek. Automated Improvement of Software Architecture Models for
Performance and Other Quality Attributes, volume 7 of The Karlsruhe Series on Software
Design and Quality. KIT Scientific Publishing, Karlsruhe, 2013.

[Koziolek 2010] H. Koziolek. Performance evaluation of component-based software systems: A
survey. Performance Evaluation, 67(8):634–658, 2010.

[Kraft et al. 2009] S. Kraft, S. Pacheco-Sanchez, G. Casale, and S. Dawson. Estimating service
resource consumption from response time measurements. In Proceedings of the 4th Inter-
national ICST Conference on Performance Evaluation Methodologies and Tools (ValueTools
’09), pages 1–10, 2009.

[Krishnamurthy et al. 2006] D. Krishnamurthy, J. A. Rolia, and S. Majumdar. A synthetic
workload generation technique for stress testing session-based systems. IEEE Transactions of
Software Engineering, 32(11):868–882, 2006.

[Krogmann 2010] K. Krogmann. Reconstruction of Software Component Architectures and
Behaviour Models using Static and Dynamic Analysis. PhD thesis, Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany, 2010.

[Kumar et al. 2009a] D. Kumar, A. Tantawi, and L. Zhang. Real-time performance modeling
for adaptive software systems. In Proceedings of the 4th International ICST Conference on
Performance Evaluation Methodologies and Tools (ValueTools ’09), pages 1–10, 2009a.

[Kumar et al. 2009b] D. Kumar, L. Zhang, and A. Tantawi. Enhanced inferencing: Estimation
of a workload dependent performance model. In Proceedings of the 4th International ICST
Conference on Performance Evaluation Methodologies and Tools (ValueTools ’09), pages 1–10,
2009b.

[Kuperberg et al. 2008] M. Kuperberg, M. Krogmann, and R. Reussner. ByCounter: Portable
runtime counting of bytecode instructions and method invocations. In Proceedings of the 3rd
International Workshop on Bytecode Semantics, Verification, Analysis and Transformation,
2008.

39

http://apmblog.compuware.com/2011/12/15/the-top-java-memory-problems-part-2
http://apmblog.compuware.com/2011/12/15/the-top-java-memory-problems-part-2
http://www.descartes-research.net/dml/

Section References

[Kuperberg et al. 2009] M. Kuperberg, M. Krogmann, and R. Reussner. TimerMeter: Quanti-
fying accuracy of software times for system analysis. In Proceedings of the 6th International
Conference on Quantitative Evaluation of SysTems (QEST) 2009, 2009.

[Lehman and Ramil 2001] M. M. Lehman and J. F. Ramil. Rules and tools for software evolution
planning and management. Annals of Software Engineering, 11(1):15–44, 2001.

[Li et al. 2010] H. Li, G. Casale, and T. Ellahi. SLA-driven planning and optimization of enter-
prise applications. In Proceedings of the 1st Joint WOSP/SIPEW International Conference
on Performance Engineering (ICPE ’10), pages 117–128. ACM, 2010.

[Li and Tian 2003] Z. Li and J. Tian. Testing the suitability of markov chains as web usage
models. In Proceedings of the 27th Annual International Conference on Computer Software
and Applications (COMPSAC ’03), pages 356–361. IEEE Computer Society, 2003.

[Lilja 2005] D. J. Lilja. Measuring computer performance: A practitioner’s guide. Cambridge
University Press, 2005.

[Liu et al. 2004] T.-K. Liu, H. Shen, and S. Kumaran. A capacity sizing tool for a business
process integration middleware. In Proceedings of the IEEE International Conference on E-
Commerce Technology (CEC 2004), pages 195–202. IEEE, 2004.

[Liu et al. 2006] Z. Liu, L. Wynter, C. H. Xia, and F. Zhang. Parameter inference of queueing
models for it systems using end-to-end measurements. Performance Evaluation, 63(1):36–60,
2006.

[Marwede et al. 2009] N. S. Marwede, M. Rohr, A. van Hoorn, and W. Hasselbring. Automatic
failure diagnosis in distributed large-scale software systems based on timing behavior anomaly
correlation. In Proceedings of the 13th European Conference on Software Maintenance and
Reengineering (CSMR’09), pages 47–57. IEEE, Mar. 2009.

[Menascé and Almeida 2002] D. Menascé and V. Almeida. Capacity Planning for Web Services:
Metrics, Models, and Methods. Prentice Hall, 2002.

[Menascé 2002] D. A. Menascé. TPC-W: A benchmark for e-commerce. IEEE Internet Com-
puting, 6(3):83–87, 2002.

[Menasce 2004] D. A. Menasce. Composing web services: A QoS view. IEEE Internet Com-
puting, 8(6):88–90, 2004.

[Menascé 2008] D. A. Menascé. Computing missing service demand parameters for performance
models. In Proceedings of the CMG Conference 2008, pages 241–248, 2008.

[Menascé and Gomaa 2000] D. A. Menascé and H. Gomaa. A method for design and performance
modeling of client/server systems. IEEE Transactions of Software Engineering, 26(11):1066–
1085, 2000.

[Menascé et al. 1999] D. A. Menascé, V. A. F. Almeida, R. Fonseca, and M. A. Mendes. A
methodology for workload characterization of e-commerce sites. In Proceedings of the 1st ACM
Conference on Electronic Commerce (EC ’99), pages 119–128. ACM, 1999.

[Menascé et al. 2005] D. A. Menascé, M. Bennani, and H. Ruan. On the use of online ana-
lytic performance models, in self-managing and self-organizing computer systems. In Self-star
Properties in Complex Information Systems, pages 128–142, 2005.

40

Section References

[Menascé et al. 2007] D. A. Menascé, H. Ruan, and H. Gomaa. QoS management in service-
oriented architectures. Perform. Eval., 64(7-8):646–663, 2007.

[Mi et al. 2008] N. Mi, L. Cherkasova, K. M. Ozonat, J. Symons, and E. Smirni. Analysis of ap-
plication performance and its change via representative application signatures. In Proceedings
of the IEEE Network Operations and Management Symposium (NOMS 2008), pages 216–223,
2008.

[Mos 2004] A. Mos. A framework for adaptive monitoring and performance management of
component-based enterprise applications. PhD thesis, Dublin City Universit, 2004.

[New Relic, Inc. 2015] New Relic, Inc. New Relic, Inc. http://newrelic.com, 2015.

[Nguyen et al. 2012] T. H. D. Nguyen, B. Adams, Z. M. Jiang, A. E. Hassan, M. Nasser, and
P. Flora. Automated detection of performance regressions using statistical process control
techniques. In Proceedings of the 3rd ACM/SPEC International Conference on Performance
Engineering (ICPE ’12), pages 299–310. ACM, 2012.

[Object Management Group, Inc. 2005] Object Management Group, Inc. UML Profile for
Schedulability, Performance, and Time (SPT), version 1.1. http://www.omg.org/spec/SPTP/
1.1/, 2005.

[Object Management Group, Inc. 2011] Object Management Group, Inc. UML profile for
MARTE: Modeling and Analysis of Real-Time Embedded Systems, version 1.1. http://www.
omg.org/spec/MARTE/1.1/, 2011.

[Object Management Group, Inc. 2012] Object Management Group, Inc. Structured metrics
meta-model (smm). http://www.omg.org/spec/SMM/, 2012.

[Object Management Group, Inc. 2013] Object Management Group, Inc. Modeling and Analysis
of Real-time Embedded Systems (MARTE), 2013. URL www.omg.org/spec/MARTE/.

[Open Services for Lifecycle Collaboration 2014] Open Services for Lifecycle Collaboration.
OSLC Performance Monitoring Specification version 2.0. http://open-services.net/wiki/
performance-monitoring/OSLC-Performance-Monitoring-Specification-Version-2.

0/, 2014.

[Pacifici et al. 2008] G. Pacifici, W. Segmuller, M. Spreitzer, and A. Tantawi. CPU demand
for web serving: Measurement analysis and dynamic estimation. Performance Evaluation, 65
(6-7):531–553, 2008.

[Parsons and Murphy 2004] T. Parsons and J. Murphy. A framework for automatically de-
tecting and assessing performance antipatterns in component based systems using run-time
analysis. In Proceedings of the 9th International Workshop on Component Oriented Program-
ming (WCOP ’04), 2004.

[Perez et al. 2013] J. F. Perez, S. Pacheco-Sanchez, and G. Casale. An offline demand estimation
method for multi-threaded applications. In Proceedings of the 2012 IEEE 20th International
Symposium on Modeling, Analysis & Simulation of Computer and Telecommunication Systems
(MASCOTS), 2013.

[Pérez et al. 2015] J. F. Pérez, G. Casale, and S. Pacheco-Sanchez. Estimating computational
requirements in multi-threaded applications. IEEE Transactions on Software Engineering, 41
(3):264–278, 2015.

41

http://newrelic.com
http://www.omg.org/spec/SPTP/1.1/
http://www.omg.org/spec/SPTP/1.1/
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/MARTE/1.1/
http://www.omg.org/spec/SMM/
www.omg.org/spec/MARTE/
http://open-services.net/wiki/performance-monitoring/OSLC-Performance-Monitoring-Specification-Version-2.0/
http://open-services.net/wiki/performance-monitoring/OSLC-Performance-Monitoring-Specification-Version-2.0/
http://open-services.net/wiki/performance-monitoring/OSLC-Performance-Monitoring-Specification-Version-2.0/

Section References

[Petriu and Woodside 2002] D. C. Petriu and C. M. Woodside. Software performance models
from system scenarios in use case maps. In Proceedings of the 12th International Conference
on Computer Performance Evaluation, Modelling Techniques and Tools (TOOLS ’02), pages
141–158. Springer-Verlag, 2002.

[Petriu and Woodside 2003] D. C. Petriu and C. M. Woodside. Performance analysis with
UML. In UML for Real, pages 221–240. Springer-Verlag, 2003.

[Poess and Nambiar 2008] M. Poess and R. O. Nambiar. Energy cost, the key challenge of
today’s data centers: A power consumption analysis of TPC-C results. In Proceedings of the
VLDB Endowment, pages 1229–1240. VLDB Endowment, 2008.

[Rathfelder et al. 2012] C. Rathfelder, S. Becker, K. Krogmann, and R. Reussner. Workload-
aware system monitoring using performance predictions applied to a large-scale e-mail system.
In Proceedings of the Joint 10th Working IEEE/IFIP Conference on Software Architecture
(WICSA) & 6th European Conference on Software Architecture (ECSA), pages 31–40, 2012.

[Reitbauer 2010] M. N. A. Reitbauer. Flush and clear: O/R mapping anti-
patterns, 2010. URL http://www.developerfusion.com/ARTICLE/84945/

flush-and-clear-or-mapping-antipatterns.

[Riverbed Technology 2015] Riverbed Technology. Riverbed Technology. http://www.

riverbed.com, 2015.

[Rolia and Vetland 1995] J. Rolia and V. Vetland. Parameter estimation for performance models
of distributed application systems. In Proceedings of the 1995 Conference of the Centre for
Advanced Studies on Collaborative Research (CASCON ’95), page 54. IBM Press, 1995.

[Salehie and Tahvildari 2009] M. Salehie and L. Tahvildari. Self-adaptive software: Landscape
and research challenges. ACM Transactions on Autonomous and Adaptive Systems (TAAS),
4(2):1–42, 2009.

[Salfner et al. 2010] F. Salfner, M. Lenk, and M. Malek. A survey of online failure prediction
methods. ACM Comput. Surv., 42(3):10:1–10:42, 2010.

[Sambasivan et al. 2011] R. R. Sambasivan, A. X. Zheng, M. De Rosa, E. Krevat, S. Whitman,
M. Stroucken, W. Wang, L. Xu, and G. R. Ganger. Diagnosing performance changes by
comparing request flows. In Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation (NSDI ’11), pages 43–56. USENIX Association, 2011.

[Schroeder et al. 2006] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open versus closed:
A cautionary tale. In Proceedings of the 3rd conference on Networked Systems Design &
Implementation (NSDI ’06), pages 18–18. USENIX Association, 2006.

[Shams et al. 2006] M. Shams, D. Krishnamurthy, and B. Far. A model-based approach for
testing the performance of web applications. In Proceedings of the 3rd International Workshop
on Software Quality Assurance (SOQUA ’06), pages 54–61. ACM, 2006.

[Sharma et al. 2008] A. B. Sharma, R. Bhagwan, M. Choudhury, L. Golubchik, R. Govindan,
and G. M. Voelker. Automatic request categorization in internet services. SIGMETRICS
Perform. Eval. Rev., 36:16–25, 2008.

[Sharma and Coyne 2015] S. Sharma and B. Coyne. DevOps. John Wiley & Sons, 2015.

42

http://www.developerfusion.com/ARTICLE/84945/flush-and-clear-or-mapping-antipatterns
http://www.developerfusion.com/ARTICLE/84945/flush-and-clear-or-mapping-antipatterns
http://www.riverbed.com
http://www.riverbed.com

Section References

[Smith and Williams 2000] C. U. Smith and L. G. Williams. Software performance antipatterns.
In Proceedings of the 2nd International Workshop on Software and Performance (WOSP ’00),
pages 127–136. ACM, 2000.

[Smith and Williams 2002a] C. U. Smith and L. G. Williams. Performance Solutions: A
practical guide to creating responsive, scalable software. Addison-Wesley, 2002a.

[Smith and Williams 2002b] C. U. Smith and L. G. Williams. New software performance
antipatterns: More ways to shoot yourself in the foot. In Int. CMG Conference, pages 667–
674, 2002b.

[Smith and Williams 2002c] C. U. Smith and L. G. Williams. Software performance antipatterns:
Common performance problems and their solutions. In CMG Conference, volume 2, pages
797–806, 2002c.

[Smith and Williams 2003] C. U. Smith and L. G. Williams. More new software antipatterns:
Even more ways to shoot yourself in the foot. In Int. CMG Conference, pages 717–725, 2003.

[Smith et al. 2010] C. U. Smith, C. M. Lladó, and R. Puigjaner. Performance Model Interchange
Format (PMIF 2): A comprehensive approach to queueing network model interoperability.
Performance Evaluation, 67:548–568, 2010.

[Spinner et al. 2014] S. Spinner, G. Casale, X. Zhu, and S. Kounev. LibReDE: A library for
resource demand estimation. In Proceedings of the 5th ACM/SPEC International Conference
on Performance Engineering (ICPE ’14), pages 227–228. ACM, 2014.

[Spinner et al. 2015] S. Spinner, G. Casale, F. Brosig, and S. Kounev. Evaluating approaches
to resource demand estimation. Performance Evaluation, 2015. In press. Accepted for publi-
cation.

[Standard Performance Evaluation Corporation 2015] Standard Performance Evaluation Cor-
poration. SPEC Research Group’s DevOps Performance Working Group. http://research.
spec.org/devopswg/, 2015.

[Still 2013] A. Still. Category archives: Performance anti-patterns, 2013. URL http:

//performance-patterns.com/category/performance-anti-patterns/.

[Sutton and Jordan 2011] C. Sutton and M. I. Jordan. Bayesian inference for queueing networks
and modeling of internet services. The Annals of Applied Statistics, 5(1):254–282, 2011.

[Tallabaci and Silva Souza 2013] G. Tallabaci and V. E. Silva Souza. Engineering adaptation
with Zanshin: An experience report. In ICSE Workshop on Software Engineering for Adaptive
and Self-Managing Systems, pages 93–102, 2013.

[Tene 2015] G. Tene. Understanding application hiccups: An introduction to
the open source jHiccup tool, 2015. URL http://www.azulsystems.com/webinar/

understanding-application-hiccups-on-demand.

[Thereska et al. 2010] E. Thereska, B. Doebel, A. X. Zheng, and P. Nobel. Practical performance
models for complex, popular applications. In Proceedings of the ACM SIGMETRICS Interna-
tional Conference on Measurement and Modeling of Computer Systems (SIGMETRICS ’10),
pages 1–12. ACM, 2010.

[Treibig et al. 2010] J. Treibig, G. Hager, and G. Wellein. Likwid: A lightweight performance-
oriented tool suite for x86 multicore environments. Proceedings of the 39th International
Conference on Parallel Processing Workshop (ICPPW ’10), 0:207–216, 2010.

43

http://research.spec.org/devopswg/
http://research.spec.org/devopswg/
http://performance-patterns.com/category/performance-anti-patterns/
http://performance-patterns.com/category/performance-anti-patterns/
http://www.azulsystems.com/webinar/understanding-application-hiccups-on-demand
http://www.azulsystems.com/webinar/understanding-application-hiccups-on-demand

Section References

[Trubiani and Koziolek 2011] C. Trubiani and A. Koziolek. Detection and solution of soft-
ware performance antipatterns in Palladio architectural models. In Proceedings of the 2nd
ACM/SPEC International Conference on Performance Engineering (ICPE ’11), pages 19–30.
ACM, 2011.

[Tůma 2014] P. Tůma. Performance awareness: Keynote abstract. In Proceedings of the 5th
ACM/SPEC International Conference on Performance Engineering (ICPE ’14), pages 135–
136. ACM, 2014.

[Urgaonkar et al. 2007] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi.
Analytic modeling of multitier internet applications. ACM Trans. Web, 1, 2007.

[van Hoorn 2014] A. van Hoorn. Model-Driven Online Capacity Management for Component-
Based Software Systems. Number 2014/6 in Kiel Computer Science Series. Department of
Computer Science, Kiel University, 2014. Dissertation, Faculty of Engineering, Kiel University.

[van Hoorn et al. 2008] A. van Hoorn, M. Rohr, and W. Hasselbring. Generating probabilistic
and intensity-varying workload for web-based software systems. In Proceedings of the SPEC
International Performance Evaluation Workshop 2008 (SIPEW ’08), volume 5119 of LNCS,
pages 124–143. Springer-Verlag, 2008.

[van Hoorn et al. 2012] A. van Hoorn, J. Waller, and W. Hasselbring. Kieker: A framework
for application performance monitoring and dynamic software analysis. In Proceedings of the
3rd ACM/SPEC International Conference on Performance Engineering (ICPE ’12), pages
247–248. ACM, 2012.

[van Hoorn et al. 2014] A. van Hoorn, C. Vögele, E. Schulz, W. Hasselbring, and H. Krcmar.
Automatic extraction of probabilistic workload specifications for load testing session-based
application systems. In Proceedings of the 8th International Conference on Performance Eval-
uation Methodologies and Tools (ValueTools 2014), 2014.

[Vogel and Giese 2014] T. Vogel and H. Giese. Model-Driven Engineering of Self-Adaptive
Software with EUREMA. ACM Transactions on Autonomous and Adaptive Systems, 8(4):
1–33, Jan. 2014.

[Vogel et al. 2011] T. Vogel, A. Seibel, and H. Giese. The role of models and megamodels at
runtime. Models in Software Engineering, 2011.

[von Detten 2012] M. von Detten. Archimetrix: A tool for deficiency-aware software architecture
reconstruction. In Proceedings of the 2012 19th Working Conference on Reverse Engineering
(WCRE ’12), pages 503–504. IEEE Computer Society, 2012.

[von Kistowski et al. 2014] J. von Kistowski, N. R. Herbst, and S. Kounev. Modeling variations
in load intensity over time. In Proceedings of the 3rd International Workshop on Large Scale
Testing (LT ’14), pages 1–4. ACM, 2014.

[von Kistowski et al. 2015] J. von Kistowski, N. R. Herbst, D. Zoller, S. Kounev, and A. Hotho.
Modeling and Extracting Load Intensity Profiles. In Proceedings of the 10th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2015),
2015.

[Waller et al. 2015] J. Waller, N. C. Ehmke, and W. Hasselbring. Including performance
benchmarks into continuous integration to enable DevOps. SIGSOFT Software Engineering
Notes, 40(2):1–4, Mar. 2015.

44

Section References

[Wang and Casale 2013] W. Wang and G. Casale. Bayesian service demand estimation using
gibbs sampling. In Proceedings of the 2012 IEEE 20th International Symposium on Modeling,
Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), 2013.

[Wang et al. 2012] W. Wang, X. Huang, X. Qin, W. Zhang, J. Wei, and H. Zhong. Application-
level CPU consumption estimation: Towards performance isolation of multi-tenancy web ap-
plications. In Proceedings of the 2012 IEEE 6th International Conference on Cloud Computing
(CLOUD 2012), pages 439–446, 2012.

[Weiss et al. 2013] C. Weiss, D. Westermann, C. Heger, and M. Moser. Systematic performance
evaluation based on tailored benchmark applications. In Proceedings of the 4th ACM/SPEC In-
ternational Conference on Performance Engineering (ICPE ’13), pages 411–420. ACM, 2013.

[Wert et al. 2013] A. Wert, J. Happe, and L. Happe. Supporting swift reaction: Automatically
uncovering performance problems by systematic experiments. In Proceedings of the 2013
ACM/IEEE International Conference on Software Engineering (ICSE 2013), 2013.

[Wert et al. 2014] A. Wert, M. Oehler, C. Heger, and R. Farahbod. Automatic detection
of performance anti-patterns in inter-component communications. In Proceedings of the 10th
International ACM Sigsoft Conference on Quality of Software Architectures (QoSA ’14), pages
3–12. ACM, 2014.

[Westermann 2014] D. Westermann. Deriving Goal-oriented Performance Models by Systematic
Experimentation. PhD thesis, Karlsruhe Institute of Technology, 2014.

[Westermann et al. 2012] D. Westermann, J. Happe, R. Krebs, and R. Farahbod. Auto-
mated inference of goal-oriented performance prediction functions. In Proceedings of the 27th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pages 190–
199, 2012.

[Woodside et al. 2007] C. M. Woodside, G. Franks, and D. C. Petriu. The future of software
performance engineering. In Future of Software Engineering, (FOSE ’07), pages 171–187, May
2007.

[Woodside et al. 2005] M. Woodside, D. C. Petriu, D. B. Petriu, H. Shen, T. Israr, and
J. Merseguer. Performance by unified model analysis (PUMA). In Proceedings of the 5th
International Workshop on Software and Performance (WOSP ’05), pages 1–12. ACM, 2005.

[Wu and Woodside 2004] X. Wu and M. Woodside. Performance modeling from software
components. In Proceedings of the 4th International Workshop on Software and Performance
(WOSP ’04), pages 290–301. ACM, 2004.

[Xu 2012] J. Xu. Rule-based automatic software performance diagnosis and improvement.
Performance Evaluation, 69(11):525–550, 2012.

[Zenoss 2014] Zenoss. Zenoss (2014). http://www.zenoss.com, 2014.

[Zhang et al. 2002] L. Zhang, C. H. Xia, M. S. Squillante, and W. N. I. Mills. Workload
service requirements analysis: A queueing network optimization approach. In Proceedings of
the 10th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunications Systems (MASCOTS 2002), page 23ff, 2002.

[Zheng et al. 2008] T. Zheng, C. M. Woodside, and M. Litoiu. Performance model estimation
and tracking using optimal filters. IEEE Transactions of Software Engineering, 34(3):391–406,
2008.

45

Section References

[Zhu et al. 2007] L. Zhu, Y. Liu, N. B. Bui, and I. Gorton. Revel8or: Model driven capacity plan-
ning tool suite. In Proceedings of the 29th International Conference on Software Engineering
(ICSE ’07), pages 797–800, 2007.

46

	Introduction
	Context
	Enterprise Application Performance
	DevOps

	Performance Management Activities
	Measurement-Based Performance Evaluation
	Model-Based Performance Evaluation
	Performance and Workload Model Extraction

	Software Performance Engineering During Development
	Design-Time Performance Models
	Performance Awareness
	Performance Anti-Pattern Detection
	Performance Change Detection

	Application Performance Management During Operations
	Performance Monitoring
	Problem Detection and Diagnosis
	Models at Runtime

	Evolution: Going Back-and-Forth between Development and Operations
	Capacity Planning and Management
	Software Architecture Optimization for Performance

	Conclusion
	Acronyms
	References

