
Extending the OpenTelemetry Java Auto-Instrumentation

Agent to Publish Green Software Metrics

Andreas Brunnert (brunnert@hm.edu)
Ferdinand Gutzy (ferdinand.gutzy@hm.edu)

Munich University of Applied Sciences HM, Munich, Germany

Abstract

The increasing focus on the carbon emissions of the
IT sector has led to the creation of green software
metrics that attempt to quantify the environmental
impact of software in terms of carbon emissions. One
of the most prominent examples is the Software Car-
bon Intensity (SCI) metric, recently standardized as
ISO/IEC 21031:2024, which is defined as the rate
of carbon emissions for a software system. Despite
the merits of these metrics, development teams often
lack the tools to capture them for their software sys-
tems. This paper attempts to address this challenge
by presenting an extension to the OpenTelemetry Java
Auto-Instrumentation Agent to collect not only tra-
ditional performance metrics such as response time,
throughput, and resource utilization, but also carbon
emission data for an instrumented software system.

1 Introduction

At the time of writing there is no commonly agreed
upon standard for quantifying the carbon emissions of
software systems[2]. Researchers and industry prac-
titioners alike have proposed green software metrics
to fill this gap[3]. One of the green software metrics
that is already standardized as ISO/IEC 21031:20241

is the Software Carbon Intensity (SCI) metric2. SCI
is defined as follows:

SCI = ((E ∗ I) +M)perR

E: energy consumed by a software system (kWh)

I: carbon intensity of electricity (gCO2eq/kWh)

M: embodied carbon, the amount of carbon emitted
during the creation and disposal of a hardware
device (gCO2eq)

R: functional unit that describes how the application
scales (e.g, transactions per minute or simultane-
ous users).

This paper describes an extension of the Open-
Telemetry (OTel) Java Auto-Instrumentation Agent3

1https://www.iso.org/standard/86612.html
2https://sci.greensoftware.foundation
3https://github.com/open-telemetry/

opentelemetry-java-instrumentation

to collect the relevant data to calculate the SCI metric
for individual transactions of an instrumented soft-
ware system. The OTel Java Auto-Instrumentation
Agent can be attached to any Java application run-
ning on a Java version higher than 8 and automat-
ically collects traces, metrics and logs for commonly
used libraries and frameworks automatically. It does
this by injecting measurement probes before and after
each method invocation to capture so-called spans. In
this work we extend the probes of this agent to collect
the data to calculate the SCI value for all transactions
(e.g., API calls) executed by the instrumented appli-
cation.

2 Architectural Overview

The general architecture of such an extension has been
outlined in our previous work [2] and is shown in Fig-
ure 1. We use OpenTelemetry4 as standard for captur-
ing and transferring the metrics from the application
to Prometheus5 as time series database. Grafana6 is
used to visualize and calculate the carbon emissions
per transaction as well as per server, container, or vir-
tual machine involved in processing a transaction over
time.

Compared to our previous work in [2], we have sim-
plified the overall architecture by eliminating the need
to integrate with an external service to capture car-
bon emission data. In the current implementation the
application agent sends the carbon emission data for
each transaction directly along with the other trans-
action data such as resource demands, response time
and throughput.

The reason for this change is that we are now using
freely available data7 from the Cloud Carbon Foot-
print (CCF)8 project to calculate the emissions, which
are bundled with the application and do not change
over time.

4https://opentelemetry.io
5https://prometheus.io
6https://grafana.com
7https://github.com/cloud-carbon-footprint/

ccf-coefficients
8https://www.cloudcarbonfootprint.org/

https://www.iso.org/standard/86612.html
https://sci.greensoftware.foundation
https://github.com/open-telemetry/opentelemetry-java-instrumentation
https://github.com/open-telemetry/opentelemetry-java-instrumentation
https://opentelemetry.io
https://prometheus.io
https://grafana.com
https://github.com/cloud-carbon-footprint/ccf-coefficients
https://github.com/cloud-carbon-footprint/ccf-coefficients
https://www.cloudcarbonfootprint.org/


Application
Resource Demands
& Carbon Emission, 
Power and Energy 

Data

OpenTelemetry
collector Prometheus Grafana

OpenTelemetry
protocol (OTLP)

Metrics: 
- Resource demands per 

transaction
- Throughput per transaction
- Carbon emission, power and 

energy data for CPU, memory, 
storage, and network per 
region and (cloud) provider

Figure 1: Architectural Overview [2]

rp = {rpT1, …, rpTn}

rpTn = {rpS1Tn, …, rpSiTn}

rpSiTn=

dCPU
dSTOr
dSTOw
dMEM
dNETi
dNETo

Server (S1)

Si

S…

Transaction (T1) … (Tn) 

Figure 2: Resource Profile [1]

3 Collecting Resource Demands

The basis for assessing the carbon emissions of a
software system is the amount of hardware resources
(i.e., CPU, memory, storage, network) used during the
transaction processing as this drives the energy con-
sumption and helps us to calculate the E value of the
SCI formula.

In [1] and [2] we have already shown and evalu-
ated how to measure resource demand for a software
system. We use the same concepts to capture the
resource demand (d) values for CPU (dCPU), mem-
ory (dMEM), storage (dSTO), and network(dMEM) for
each method (or transaction) by extending the exist-
ing measurement probes injected by the OTel Java
Auto-Instrumentation Agent using a SpanProcessor9.
The resource demand for CPU is measured as CPU
time in ms, while the other demands for memory, stor-
age and network are measured as bytes allocated in
memory or read (r) from respectively written (w) to
storage or network. We collect this data in so-called
resource profiles as shown in Figure 2 in which we
store a vector of resource demands per transaction of
the software system.

This resource demand data now needs to be trans-
lated into carbon emission data as explained in the
following section.

4 Calculating Carbon Emissions

Since we cannot use the resource demand data as a di-
rect input for the SCI calculation, we need to translate
it into energy consumption and carbon emission data.
In order to do this, we follow the recommendations
provided in the CCF methodology10.

For CPU resources, the CCF methodology and our

9https://opentelemetry.io/docs/specs/otel/trace/sdk/

#span-processor
10https://www.cloudcarbonfootprint.org/docs/

methodology

implementation rely on a simple model originally pub-
lished by Etsy as part of their Cloud Jewels conver-
sion factors11, which uses data on the minimum (idle,
PCPUmin) and maximum (100% utilization, PCPUmax)
power consumption of a processor (e.g., taken from
SPECpower results12) to calculate the actual power
consumption (PCPU) based on the current CPU uti-
lization (CPUutil) as follows:

PCPU = PCPUmin + (CPUutil ∗ (PCPUmax − PCPUmin))

The CPU power model also takes into account
the data center’s Power Usage Effectiveness (PUE),
a metric that describes how much power is consumed
by the computing equipment in a data center relative
to the total power (including cooling and other energy
consumers). PUE is not directly measured, but is con-
figured based on the cloud provider or data center in
which the software is running.

PCPUinclPUE = PCPU ∗ PUE

As the total CPU utilization (CPUutil) is not di-
rectly related to the CPU demands of a single trans-
action of a system, we need to measure CPUutil in
order to calculate the current power consumption of
the CPU, and then we can allocate the power con-
sumption proportionally to single transactions of the
system. To do this, the CPU demand data needs to be
converted into a utilization value (CPUutilT) by sum-
ming up all CPU demand values (measured in ms) of
a transaction in a given time period (where t0 is the
start timestamp of the time period in ms and tn is the
end of the end timestamp of the time period in ms)
and dividing this sum by the total time the CPU was
busy in that time period as follows:

CPUutilT = (

tn∑
t0

dCPU )÷ (CPUutil ∗ (tn − t0))

Using this data we can calculate the power usage
of the transaction (PTCPU) as follows:

PTCPU = PCPUinclPUE ∗ CPUutilT

Using this power consumption value, we can calcu-
late the energy (E) in kilowatt-hours (kWh) by con-
sidering the time interval (t0 to tn) in hours as follows:

ECPU = (PTCPU ∗ (tn − t0))/1000

To determine the carbon emissions (cCPU in
gCO2eq) required to produce the energy, we need to
know the grid emissions factor (GEF). The GEF de-
notes the carbon intensity of producing one kWh in
a given region and is typically expressed in grams of
CO2 equivalents per kWh (gCO2eq/kWh). The GEF

11https://www.etsy.com/codeascraft/

cloud-jewels-estimating-kwh-in-the-cloud
12https://www.spec.org/power_ssj2008/results/power_

ssj2008.html

2

https://opentelemetry.io/docs/specs/otel/trace/sdk/#span-processor
https://opentelemetry.io/docs/specs/otel/trace/sdk/#span-processor
https://www.cloudcarbonfootprint.org/docs/methodology
https://www.cloudcarbonfootprint.org/docs/methodology
https://www.etsy.com/codeascraft/cloud-jewels-estimating-kwh-in-the-cloud
https://www.etsy.com/codeascraft/cloud-jewels-estimating-kwh-in-the-cloud
https://www.spec.org/power_ssj2008/results/power_ssj2008.html
https://www.spec.org/power_ssj2008/results/power_ssj2008.html


is derived by the region in which the software is op-
erated and this region needs to be configured for the
agent. For cloud providers there is a list of grid emis-
sions for their regions provided by CCF10. Alternative
sources for this value would be ElectricityMaps13 or
Carbon Aware Computing14.

cCPU = ECPU ∗GEF

For storage, memory, and network the CCF
methodology10 provides a power consumption per
GB (PGB) depending on the type (RAM/HDD/SSD),
again following the initial publication by Etsy11 for
storage and network. Therefore, it is important to
know how much data is consumed in a given time pe-
riod, which can be calculated based on the resource
demand measurements. Since the resource demand
measurement values are in bytes, we need to multiply
them by 10-9 to convert them to GB values. There-
fore, the calculation of energy consumption (E) and
carbon emissions (c) is the same for memory, network,
and storage:

EGB = (PGB ∗ PUE ∗ (tn − t0))/1000

cMEM =

tn∑
t0

dMEM ∗ 10−9 ∗ EGB ∗GEF

cNET =

tn∑
t0

dNET ∗ 10−9 ∗ EGB ∗GEF

cSTO =

tn∑
t0

dSTO ∗ 10−9 ∗ EGB ∗GEF

Based on the previous calculations we can now cal-
culate the total carbon emissions of a transaction as
shown in the following section.

5 SCI Calculation

For any given transaction we can now use the the sum
of the carbon emissions (cT) of each resource as the
E*I part of the SCI specification.

E ∗ I = cT = cCPU + cMEM + cSTO + cNET

What is still missing is the embodied carbon (M)
part of the SCI calculation. Since the total embod-
ied emissions (TEE) of a hardware server cannot be
used for modern runtime environments such as vir-
tual machines (VMs) or containers, CCF10 suggests
using the relative amount of resources used by a VM
or container as M (e.g., CPU count of the instance
(CPUcounti) divided by the CPU count of the entire
server (CPUcounts)). In addition, the time that the
server is in use must be taken into account. To do
this, the coefficient 0.028915 is used to scale down the

13https://www.electricitymaps.com/
14https://www.carbon-aware-computing.com/
150.0289 = 1000 (kg to g) ÷ 4 (years of server usage) ÷ 12

(months per year) ÷ 30 (days per month) ÷ 24 (hours per day)

TEE value, typically given in kgCO2eq, to gCO2eq/h
based on four years of usage. Using the above ratio
and our time interval the value for M is calculated as
follows:

M = TEE ∗ 0.0289 ∗ (tn − t0) ∗ (CPUcounti/CPUcounts)

As this value is not yet scaled to the individual
transaction, we cannot add it directly to the SCI value
of a single transaction (SCIT). We use the previously
introduced CPUutilT to properly scale this value to the
various transactions in a given time frame as follows:

MT = M ∗ CPUutilT

Finally, we can calculate the SCI value for any
given transaction (SCIT) by adding cT and MT. The
R value can be omitted because all values are already
scoped to a single functional unit, namely the transac-
tion for which the resource demand values were mea-
sured.

SCIT = cT +MT

6 Conclusion and Future Work

This work presented an extension to the OpenTeleme-
try Java Auto-Instrumentation agent that collects the
relevant data to automatically calculate an SCI score
per transaction. The current implementation state of
the emission calculation relies on many data sources
that are based on assumptions and configurations. In
addition, the data sources are static which is not real-
istic considering the GEF differences during day and
night for renewable energy sources. Therefore, we are
working on integrating other data sources that are
more up-to-date with the current grid system on the
one hand and the actual energy consumption of the
system on the other hand. In addition, we plan to
perform evaluations comparing our calculations with
real measurements to see how well they represent the
reality.

References

[1] A. Brunnert and H. Krcmar. “Continuous per-
formance evaluation and capacity planning us-
ing resource profiles for enterprise applications”.
In: Journal of Systems and Software 123 (2017),
pp. 239–262.

[2] A. Brunnert. “Green Software Metrics”. In: Com-
panion of the 15th ACM/SPEC International
Conference on Performance Engineering. ICPE
’24 Companion. London, United Kingdom: Asso-
ciation for Computing Machinery, 2024, pp. 287–
288.

[3] A. Guldner et al. “Development and evaluation of
a reference measurement model for assessing the
resource and energy efficiency of software prod-
ucts and components—Green Software Measure-
ment Model (GSMM)”. In: Future Generation
Computer Systems 155 (2024), pp. 402–418.

3

https://www.electricitymaps.com/
https://www.carbon-aware-computing.com/

	Introduction
	Architectural Overview
	Collecting Resource Demands
	Calculating Carbon Emissions
	SCI Calculation
	Conclusion and Future Work

